[1]. Sorrentino, A., Gorrasi, G., and Vittoria, V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science and Technology, 18: 84-95.
[2]. Missoum, K., Martoïa, F., Belgacem, M.N. and Bras, J. (2013). Effect of chemically modified nanofibrillated cellulose addition on the properties of fiber-based materials. Industrial Crops and Products, 48: 98-105.
[3]. Nicu, R., Lupei, M., Balan, T., and Bobu, E. (2013). Alkl-chitosan as paper coating material to improve water barrier properties. Cellulose Chemistry and Technology, 47(8): 623-630.
[4]. Rezayati-Charani, P., Moradian, M.H., and Saadatnia, M.A. (2018). Sequence analysis using cellulose nanofibers, cationic starch and polyacrylamide in the paper tensile strength. Journal of Wood and Forest Science and Technology, 25(3): 73-86.
[5]. Irimia-Vladu, M. (2014). Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chemical Society Reviews, 43(2): 588-610.
[6]. Tatari, A.A., and Shekarian, A. (2014). The Importance of Cellulose Derivatives in the Production of Biodegradable Films for Food Packaging. Journal of Applied Science and Technology, 5(19): 22-31.
[7]. Xua, Q., Gaoa, Y., Qina, M., Wua, K., Fua, Y., and Zhaob, J. (2013). Nanocrystalline cellulose from aspen kraft pulp and its application in deinked pulp. International Journal of Biological Macromolecules, 60: 241-247.
[8]. Elen, K., Murariu, M., Peeters, R., Dubois, Ph., Mullens, J., Hardy, A., and Van Bael, M. K. (2011). Towards high- performance biopackaging: barrier and mechanical properties of dual-action polycaprolactone/zinc oxide nanocomposites. Polymers Advanced Technologies, 23(10): 1422–1428.
[9]. Noushirvani, N., Ghanbarzadeh, B., and Entezami, A.A. (2012). Effect of cellulose nanocrystal and polyvinyl alcohol on the physical properties of starch based bionanocomposite films. Iranian Journal of Nutrition Sciences and Food Technology, 7(1): 63-74.
[10]. Vaezi, Kh., Asadpour, G., and Sharifi, H. (2019). Effect of ZnO nanoparticles on the mechanical, barrier and optical properties of thermoplastic cationic starch/montmorillonite biodegradable films. International Journal of Biological Macromolecules, 124: 519-529.
[11]. Vigneshwaran, N., Kumar, S., Kathe, A.A., Varadarajan, P.V., and Prasad, V. (2006). Functional finishing of cotton fabrics using zinc oxide soluble starch nano composites. Nanotechnology, 17(20): 5087-5095.
[12]. Eriksson, M., Notley, S.M., and, Wagberg, L.J. (2005). The influence on paper strength properties when building multilayers of weak polyelectrolytes onto wood fibres. Journal of Colloid and Interface Science, 292: 38-45.
[13]. Vallejos, M.E., Felissia, F.E., Area, M.C., Ehman, N.V., Tarrés, Q., and Mutjé, P. (2016). Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Carbohydrate polymers, 139: 99-105.
[14]. Jalali, T.H., Zare, B.S., Ramezani, O., and Rudi, H. (2016). Effect of nano silica and cationic polyacrylamide on retention, drainage and strength properties of recycled paper from OCC. Forest and Wood Products, 68(4): 771-784.
[15]. Mashak, A. (2014). A Brief Overview on Biodegradable Polymers in Drug Delivery Systems. Polymerization Quarterly, 4(3): 23-35.
[16]. Chaiyut, B.N., Iamma, K., Kongcharoen, K., and Cheunsakulpong, K. (2012). Preparation and Properties of Biopolymer from L-Lactide (LL) and ε-Caprolactone (CL). Engineering and Technology International Journal of Materials and Metallurgical Engineering, 6(6): 138-141.
[17]. Siepmann, J., Siegel, R.A., and Rathbone, M.J. (2012). Fundamentals and Applications of Controlled Release Drug Delivery. Advances in Delivery Science and Technology, 2rd ed. p. 507, pp. 107- 124, New York.
[18]. Roohani, M., Habibi, Y., Belgacem, N.M., Ebrahim, G., Karimi, A.N., and Dufresne, A. (2008). Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. European Polymer Journal, 44(8): 2489-2498.
[19]. Khwaldia, K., Arab-Tehrany, E., and Desobry, S. (2010). Biopolymer coatings on paper packaging materials. Comprehensive reviews in food science and food safety, 9(1): 82-91.
[20]. Rescek, A., Krehula, L.K., Katancic, Z., and Hrnjak-Murgic, Z. (2015). Active Bilayer PE/PCL Films for Food Packaging Modified with Zinc Oxide and Casein. Croatica Chemica Acta, 88(4): 461-473.
[21]. Sodeif, B., Nazarnezhad, N. and Sharifi, S.H., 2019. Investigation of mechanical and optical properties of papers coated with Polycaprolactone - Nanocrystalline cellulose - zinc oxide Nanoparticle. Wood and Paper science research, 34(1): 31-46.
[22]. Sun, X.F., Xu, F., Sun, R.C., Fowler, P., and Baird, M.S. (2005). Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydrate Research, 340: 97–106.
[23]. Ge, J., Zeng, X., Tao, X., Li, X., Shen, Zh., Yun, J., and Chen, J. (2010). Preparation and Characterization of PS-PMMA/ZnO Nanocomposite Films with Novel Properties of High Transparency and UV-Shielding Capacity. Journal of Applied Polymer Science, 18(3): 1507- 1512.
[24]. Sheng, L., Jiang, R., Zhu, Y., and Ji, Y. (2014). Electrospun Cellulose Nanocrystals/Polycaprolactone Nanocomposite Fiber Mats. Journal of Macromolecular Science, 53(5): 820-828.
[25]. Shankar, S., and Rhim, J.W. (2016). Preparation of nanocellulose from micro-crystalline cellulose: Theeffect on the performance and properties of agar-based compositefilms. Carbohydrate Polymers, 135: 18-26.
[26]. Guillaumem, C. Pinte, J., Gontard, N., and Gastaldi, E. (2010). Wheat gluten-coated paper for bio-basedfood packaging: Structure, surface and transfer properties. Food research international, 43(5): 1395-1401.
[27]. Aloui, H., Khwaldia, K., Ben slama, M., and Hamdi, M. (2011). Effect of glycerol and coating weight on functional properties of biopolymer-coated paper. Carbohydrate polymers, 86: 1063-1072.
[28]. Tihminlioglu, F., Atik, I.D., and Özen, B. (2010). Water vaper and oxygen- barrier performance of corn-zein coated polypropylene films. Journal of Food Engineering, 96(3): 342-347.
[29]. McHugh, T.H., and Krochta, J.M. (1994). Plasticized whey protein edible films: water vapor permeability properties. Journal of Agricultural and Food Chemistry, 59(2): 416-419.
[30]. Gällstedt, M., Brottman, A., and Hedenqvist, M.S. (2005). Packaging-related Properties of Protein- and Chitosan-coated Paper. Packaging technology and science, 18(4): 167- 170.
[31]. Molaei, M., Azadfallah, M., Hamzeh, Y., and Khodaeian Chegini, F. (2015). The effect of chitosan – poly (vinyl alcohol) coatings on strength and barrier properties of packaging paper. Iranian Journal of Wood and Paper Science Research, 30(2): 330-340.
[32]. Marvizadeh, M.M., Oladzadabbasabadi, N., Mohammadi Nafchi, A., and Jokar, M. (2017). Preparation and characterization of bionanocomposite film based on tapioca starch/bovine gelatin/nanorod zinc oxide. International Journal of Biological Macromolecules, 99: 1-7.
[33]. Jamshidi Kaljokahi, N., Ghanbarzadeh, B., Dehghan Nia, J., Souti, M., and Entezami, A.A. (2014). Investigation of mechanical, optical and surface hydrophilic properties of nanocomposites based on Modified Starch- Nanocrystalline Cellulose - Titanium Dioxide Nanoparticles. Iranian Food Science and Technology Research Journal, 10(3): 249-265.
[34]. Cheshmak, S., and Dehghani firouzabadi, M.R. (2014). Coating lightweight paper with whey to Packaging of fatty products. Quarterly Journal of Packaging Science and Technology, 5(19): 16-21.