آنالیز شیمیایی و شناسایی ترکیبات غالب اسانس از گیاه دارویی مریم‌گلیSalvia officinalis L.

نویسندگان
1 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران
2 گروه گیاه‌ پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران
چکیده
اسانس­ها یا روغن­های گیاهی به ترکیبات بسیار معطر و فرار در گیاهان اطلاق داده می­شود که متابولیت­های­ ثانویه­ی گیاهی نیز نامیده می­شوند. تولید مواد موثره گیاهی تحت کنترل فرایندهای ژنتیکی است ولی تولید آن در گیاه تحت تأثیر عوامل محیطی تغییر می­کند. لذا در تحقیق حاضر آنالیز شیمیایی و شناسایی ترکیبات غالب اسانس از گیاه دارویی مریم­گلی (Salvia officinalis L.) در استان اردبیل، ایران مورد بررسی قرار گرفت. گیاه مریم گلی پس از خشک شدن در دمای محیط با روش تقطیر با آب اسانس­گیری شد. اسانس با بازده 5/0 درصد بدست آمد. آنالیز شیمیایی نمونه­های جمع­آوری شده­ی گیاه دارویی مریم­گلی با استفاده از دستگاه کروماتوگرافی گازی متصل به طیف سنج جرمی شناسایی شدند. نتایج آنالیز شیمیایی نشان داد که در گیاه مریم­گلی 114 ترکیب شیمیایی ثانویه وجود دارد که از میان آن­ها ترکیب Camphor Bicyclo [2.2.1] Heptan به عنوان ترکیب غالب اسانس (47/14 درصد) تعیین گردید. بر اساس مقایسه نتایج این تحقیق با دیگر نمونه­های جمع آوری شده­ی این گیاه دارویی از مناطق مختلف ایران و همچنین برخی مناطق در جهان، شباهت­ و اختلافات بارزی در ساختار شیمیایی و ترکیب غالب این گیاه دارویی مشاهده شد. خصوصیات جغرافیایی و شرایط محیطی در تغییر ترکیبات ثانویه در گیاهان مختلف تاثیرگذار است، بنابراین این موضوع باید توسط محققین در شناسایی اسانس­های گیاهی مورد توجه قرار گیرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Chemical Analysis and Identifying Dominant Essential Oils Compositions from Sage (Salvia officinalis L.)

نویسندگان English

Ali Babaei Ghaghelestany 1
Mohammad Taghi Alebrahim 1
Mohammad Asadi 2
1 Department of Agronomy and Plant Breeding, University of Mohaghegh Ardabili, Ardabil, Iran.
2 Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده English

Essential oils (EOs) are highly aromatic and volatile compounds obtained from plant material, which are also known as secondary plant metabolites. The plant active ingredients are produced under the control of genetic processes; however, its production in the plant varies under the influence of some environmental factors. Therefore, in the present study, the chemical analysis and identifies dominant essential oils compositions from Sage) Salvia officinalis L.) are investigated in Ardabil province, Iran. Sage plant (Salvia officinalis L.) were collected and After drying at room temperature, samples extracted by method of water, essential oils yield 0.5% was obtained. Chemical analysis of the collected Salvia officinalis species was performed using a gas chromatograph (GC) coupled to a mass spectrometer (MS). Chemical analysis results showed that the plant contains 114 secondary chemical components, among which Camphor Bicyclo [2.2.1] heptan, compound was identified as the predominant essential oil (14.47%). Comparing the study results with other samples collected from different parts of Iran and world reveals some significant similarities and differences in chemical structure and dominant composition of the medicinal plant. In addition, the geographical features and environmental conditions influence the change of secondary metabolites in various plants, Therefore, the researchers need to pay attention to this issue while identifying the plant essential oils.

کلیدواژه‌ها English

Medicinal Plant
Sage
Essential oil
Chemical analysis
[1] Mozaffarian, V. A., Mozaffarian, V. A., & Mozaffarian, V. (1996). Dictionary of Iranian plant names.
[2] Yildirim, E., Kordali, S. A. B. A. N., & Yazici, G. (2011). Insecticidal effects of essential oils of eleven plant species from Lamiaceae on Sitophilus granarius (L.)(Coleoptera: Curculionidae). Rom. Biotech. Lett, 16(6), 6702-6709.
[3] Jerković, I., Mastelić, J., & Marijanović, Z. (2006). A variety of volatile compounds as markers in unifloral honey from Dalmatian sage (Salvia officinalis L.). Chemistry & biodiversity, 3(12), 1307-1316.
[4] Rafiee-Dastjerdi, H., Khorrami, F., Razmjou, J., Esmaeilpour, B., Golizadeh, A., & Hassanpour, M. (2013). The efficacy of some medicinal plant extracts and essential oils against potato tuber moth, Phthorimaea operculella (Zeller)(Lepidoptera: Gelechiidae). Journal of Crop Protection, 2(1), 93-99.
[5] Yilar, M., & Bayar, Y. (2019). Antifungal potential of essential oils of salvia officinalis and salvia tomentosa plants on six different isolates of ascochyta rabiei (Pass.) Labr. Fresenius Environmental Bulletin, 28(3), 2170-2175.
[6] Ahmadpour, R. (2017). The effects of isolated essential oils from four medicinal plants on the ectoparasitoid wasp Habrobracon hebetor Say in laboratory conditions (Doctoral dissertation, M. Sc. thesis of Agriculture Entomology. University of Mohaghegh Ardabili, Ardabil, Iran. 75 pp).
[7] Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils–a review. Food and chemical toxicology, 46(2), 446-475.
[8] Isman, M. B., Wilson, J. A., & Bradbury, R. (2008). Insecticidal activities of commercial rosemary oils (Rosmarinus officinalis.) against larvae of Pseudaletia unipuncta. and Trichoplusia ni. in relation to their chemical compositions. Pharmaceutical Biology, 46(1-2), 82-87.
[9] Shu, C. K., & Lawrence, B. M. (1997). Reasons for the variation in composition of some commercial essential oils. In: Risch, S. J. & Ho, C. T. (eds) Spices – Flavor Chemistry and Antioxidant Properties. ACS Symposium Series 660, 1997, 254 pp.
[10] Dragland, S., & Aslaksen, T. H. (1997). Effect of fertilization on yield and quality of the essential oil of peppermint (Mentha x piperita L.). Rapport-Planteforsk (Norway).
[11] Asadi, M. (2019). The lethal and physiological effects of some essential oils of medicinal plants and some chemical insecticides on the parasitoid wasp Habrobracon hebetor Say, under laboratory conditions. Ph.D. Thesis. University of Mohaghegh Ardabili, Ardabil, Iran.
[12] Asadi, M., Rafiee-Dastjerdi, H., Nouri-Ganbalani, G., Naseri, B., & Hassanpour, M. (2019). Insecticidal activity of isolated essential oils from three medicinal plants on the biological control agent, Habrobracon hebetor Say (Hymenoptera: Braconidae). Acta Biologica Szegediensis, 63(1), 63-68.
[13] Aref, S. P., & Valizadegan, O. (2015). Fumigant toxicity and repellent effect of three Iranian Eucalyptus species against the lesser grain beetle, Rhyzopertha Dominica (F.)(Col.: Bostrichidae). J Entomol Zool Stud, 3(2), 198-202.
[14] Kamatou, G. P., Makunga, N. P., Ramogola, W. P. N., & Viljoen, A. M. (2008). South African Salvia species: a review of biological activities and phytochemistry. Journal of ethnopharmacology, 119(3), 664-672. [15] Bouajaj, S., Benyamna, A., Bouamama, H., Romane, A., Falconieri, D., Piras, A., & Marongiu, B. (2013). Antibacterial, allelopathic and antioxidant activities of essential oil of Salvia officinalis L. growing wild in the Atlas Mountains of Morocco. Natural product research, 27(18), 1673-1676.
[16] Couladis, M., Tzakou, O., Mimica‐Dukić, N., Jančić, R., & Stojanović, D. (2002). Essential oil of Salvia officinalis L. from Serbia and Montenegro. Flavour and fragrance journal, 17(2), 119-126.
[17] Delamare, A. P. L., Moschen-Pistorello, I. T., Artico, L., Atti-Serafini, L., & Echeverrigaray, S. (2007). Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food chemistry, 100(2), 603-608.
[18] Grausgruber-Gröger, S., Schmiderer, C., Steinborn, R., & Novak, J. (2012). Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae). Journal of Plant Physiology, 169(4), 353-359.
[19] Kamatou, G. P., Viljoen, A. M., & Steenkamp, P. (2010). Antioxidant, antiinflammatory activities and HPLC analysis of South African Salvia species. Food Chemistry, 119(2), 684-688.
[20] Raal, A., Orav, A., & Arak, E. (2007). Composition of the essential oil of Salvia officinalis L. from various European countries. Natural product research, 21(5), 406-411.
[21] Khalil, R., & Li, Z. G. (2011). Antimicrobial activity of essential oil of Salvia officinalis L. collected in Syria. African Journal of Biotechnology, 10(42), 8397-8402.
[22] Abu-Darwish, M. S., Cabral, C., Ferreira, I. V., Gonçalves, M. J., Cavaleiro, C., Cruz, M. T., ... & Salgueiro, L. (2013). Essential oil of common sage (Salvia officinalis L.) from Jordan: assessment of safety in mammalian cells and its antifungal and anti-inflammatory potential. BioMed research international, 2013.
[23] Alizadeh, A., & Shaabani, M. (2012). Essential oil composition, phenolic content, antioxidant and antimicrobial activity in Salvia officinalis L. cultivated in Iran. Adv Environ Biol, 6(1), 221-6.
[24] Asadi, M., Nouri-Ganbalani, G., Rafiee-Dastjerdi, H., Hassanpour, M., & Naseri, B. (2018). The Effects of Rosmarinus officinalis L. and Salvia officinalis L.(Lamiaceae) Essential Oils on Demographic Parameters of Habrobracon hebetor Say (Hym.: Braconidae) on Ephestia kuehniella Zeller (Lep.: Pyralidae) Larvae. Journal of Essential Oil Bearing Plants, 21(3), 713-731.
[25] Hayouni, E. A., Chraief, I., Abedrabba, M., Bouix, M., Leveau, J. Y., Mohammed, H., & Hamdi, M. (2008). Tunisian Salvia officinalis L. and Schinus molle L. essential oils: Their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. International Journal of Food Microbiology, 125(3), 242-251.
[26] Jahanbakhshi, A., & Kheiralipour, K. (2019). Influence of vermicompost and sheep manure on mechanical properties of tomato fruit. Food Science & Nutrition, 7(4), 1172-1178.
[27] Ghaghelestany, A. B., Jahanbakhshi, A., & Taghinezhad, E. (2020). Gene transfer to German chamomile (L chamomilla M) using cationic carbon nanotubes. Scientia Horticulturae, 263, 109106. https://doi.org/10.1016/j.scienta.2019.109106.