بهینه یابی فرایند استخراج عصاره گل بابونه آلمانی با دی اکسید کربن فوق بحرانی با روش سطح پاسخ

نویسندگان
1 استادیار، گروه شیمی مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران
2 دانشیار، گروه نانوفناوری مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران
چکیده
در این پژوهش بهینه یابی فرایند استخراج عصاره گل بابونه آلمانی با تکنیک دی اکسید کربن فوق بحرانی در سطوح مختلف متغیرهای فرایندی با استفاده از روش سطح پاسخ بر مبنای طرح مرکب مرکزی انجام شد. از این رو اثرات متغیرهای فشار (240-80 بار)، دما (55-35 درجه سانتیگراد) و زمان دینامیک استخراج (150-30 دقیقه) بر بازده استخراج و محتوای جزء بیسابولول اکسید A در عصاره بدست آمده مورد ارزیابی قرار گرفت. نتایج بدست آمده نشان داد که فشار، زمان دینامیک استخراج و دما به ترتیب دارای بیشترین اثر معنی داری (p < 0.05) بر بازده استخراج بودند. همچنین اثر خطی دما و اثرات درجه دوم زمان دینامیک استخراج، دما و فشار بر محتوای اکسید بیسابولول A معنی دار بودند (p < 0.05). مطابق نتایج بهینه یابی بیشترین مقدار بازده استخراج (29/1 درصد) و محتوای اکسید بیسابولول A (12/47 درصد) برای فشار، دما و زمان دینامیک استخراج به ترتیب 240 بار، C 7/49 و 4/66 دقیقه بدست آمد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Extraction process optimization of chamomile flowerhead extract by supercritical CO2 by Response Surface Methodology

نویسندگان English

mohammad reza abdollahi moghaddam 1
ghadir rajabzadeh 2
1 Assistant Professor, Department of food chemistry, Research institute of food science and technology, Mashhad, Iran
2 Associate Professor, Department of food nanotechnology, Research institute of food science and technology, Mashhad, Iran
چکیده English

In this research extraction process optimization of chamomile (Matricaria recutita) flowerhead extract by supercritical CO2 technique was carried out at different levels of process variables using response surface methodology based on central composite design. Hence, the effects of pressure (80–240 bar), temperature (35–55 C), and dynamic extraction time (30–150 min) were evaluated with respect to extraction yield and bisabololoxide A content in the obtained extract. According to the results, the pressure had the most significant effect (p < 0.05) on the extraction yield followed by dynamic extraction time and temperature. Also the linear effect of temperature and the quadratic effects of dynamic extraction time, temperature and pressure on the bisabololoxide A content were significant (p < 0.05). As a result of the optimization process, it found that the highest amount of extraction yield (1.29%) and bisabololoxide A content (47.12%) was obtained by applying pressure, temperature and dynamic extraction time at 240 bar, 49.7 C and 66.4 minute, respectively.

کلیدواژه‌ها English

Extraction
Chamomile
Optimization
supercritical carbon dioxide
response surface methodology
[1] Forster, H. B., Niklas, H., and Lutz, S. 1980. Antispasmodic effects of some medicinal plants. Planta Medica, 40(12): 309–319.
[2] Wilkinson, S., Aldridge, J., Salmon, I., Cain, F., Wilson, B. 1999. An evaluation of aromatherapy massage in palliative care. Palliative Medicine, 13(5): 409–417.
[3] Sarkic, A., and Stappen, I. 2018. Essential oils and their single compounds in cosmetics—A critical review. Cosmetics, 5: 1–21.
[4] Srivastava, J. K., Shankar, E., and Gupta, S. 2010. Chamomile: A herbal medicine of the past with a bright future. Molecular medicine reports, 3(6): 895-901.
[5] Der, M.A., and Liberti, L. 1988. Natural product medicine: A scientific guide to foods, drugs, cosmetics. George, Philadelphia: F. Stickley Co.
[6] Mann, C., and Staba, E.J. 1986. In herbs, spices and medicinal plants: recent advances in botany. In: Craker, LE.; Simon, JE., editors. Horticulture and Pharmacology. Phoenix, Arizona: Oryx Press, 235-280.
[7] McKay, D.L., and Blumberg, J.B. 2006. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytotherapy Research, 20: 519–530.
[8] Graf, J. 2000. Herbal anti-inflammatory agents for skin disease. Skin Therapy Letter, 5(4): 3–5.
[9] Patzelt-Wenczler, R., and Ponce-Pöschl, E. 2000. Proof of efficacy of KamillosanR cream in atopic eczema. European journal of medical research, 5(4): 171–175.
[10] Kobayashi, Y., Nakano, Y., Inayama, K., Sakai, A., Kamiya, T. 2003. Dietary intake of the flower extracts of German chamomile (Matricaria recutita L.) inhibited compound 48/80-induced itch-scratch responses in mice. Phytomedicine, 10(8): 657–664.
[11] Kobayashi, Y., Takahashi, R., Ogino, F. 2005. Antipruritic effect of the single oral administration of German chamomile flower extract and its combined effect with antiallergic agents in ddY mice. Journal of ethnopharmacology, 101(1-3): 308–312.
[12] Kobayashi Y., Suzuki A., Kobayashi, A., et al. 2007. Suppression of sensory irritation by chamomile essential oil and its active component – Bisabololoxide A. In / International Symposium on Chamomile Research, Development and Production, 749: 163–174.
[13] Ogata, I., Kawanai, T., Hashimoto, E., Nishimura, Y., Oyama, Y., Seo, H. 2010. Bisabololoxide A, one of the main constituents in German chamomile extract, induces apoptosis in rat thymocytes. Archives of toxicology, 84(1): 45.
[14] Ara, K.M., Jowkarderis, M., Raofie, F. 2015. Optimization of super- critical fluid extraction of essential oils and fatty acids from flixweed (Descurainia Sophia L.) seed using response surface methodology and central composite design. Journal of Food Science and Technology, 52: 4450–4458.
[15] Danh, L.T., Truong, P., Mammucari, R., Foster, N. 2010. Extraction of vetiver essential oil by ethanol-modified supercritical carbon dioxide. Chemical Engineering Journal, 165(1): 26–34.
[16] Nimet, G., E.A.D., Silva, Palú, F., Dariva, C., Freitas, L.S., Neto, A.M., Filho, L.C. 2011. Extraction of sunflower (Heliantus annuus, L.) oil with supercritical CO2, and subcritical propane: Experimental and modeling. Chemical Engineering Journal, 168(1): 262–268.
[17] Pourmortazavi, S.M., and Hajimirsadeghi, S.S. 2007. Supercritical fluid extraction in plant es- sential and volatile oil analysis, Journal of chromatography A, 1163(1-2): 2–24.
[18] Sargolzaei, J., and Moghaddam, A.H. (2013). Predicting the yield of pomegranate oil from super- critical extraction using artificial neural networks and an adaptive-network-based fuzzy inference system. Front. Frontiers of Chemical Science and Engineering, 7(3): 357–365.
[19] Vuorela, H., Holm, Y., Hiltunen, R., Harvala, T., and Laitinen, A. 1990. Extraction of the volatile oil in chamomile flowerheads using supercritical carbon dioxide. Flavour and fragrance journal, 5(2): 81-84.
[20] Povh, N.P., Marques, M.O. and Meireles, M.A.A., 2001. Supercritical CO2 extraction of essential oil and oleoresin from chamomile (Chamomilla recutita [L.] Rauschert). The Journal of Supercritical Fluids, 21(3): 245-256.
[21] Wang, W., Ma, X., Xu, Y., Cao, Y., Jiang, Z., Ding, T., Ye, X., and Liu, D. 2015. Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method. Food chemistry, 178: 106-114.
[22] Xiong, K., Chen, Y. and Shen, S. 2019. Experimental optimization and mathematical modeling of supercritical carbon dioxide extraction of essential oil from Pogostemon cablin. Chinese Journal of Chemical Engineering, https://doi.org/10.1016/j.cjche.2019.03.004
[23] Al‐Suod, H., Ratiu, I.A., Krakowska‐Sieprawska, A., Lahuta, L., Górecki, R. and Buszewski, B. 2019. Supercritical fluid extraction in isolation of cyclitols and sugars from chamomile flowers. Journal of separation science, 42(20): 3243-3252.
[24] Shrigod, N.M., Swami Hulle, N.R. and Prasad, R.V. 2017. Supercritical fluid extraction of essential oil from mint leaves (Mentha spicata): Process optimization and its quality evaluation. Journal of food process engineering, 40(3): p.e12488. https://doi.org/10.1111/jfpe.12488.
[25] Sodeifian, G., Sajadian, S.A. and Ardestani, N.S. 2016. Extraction of Dracocephalum kotschyi Boiss using supercritical carbon dioxide: experimental and optimization. The Journal of Supercritical Fluids, 107: 137-144.
[26] Herzi, N., Camy, S., Bouajila, J., Destrac, P., Romdhane, M. and Condoret, J.S. 2013. Supercritical CO2 extraction of Tetraclinis articulata: chemical composition, antioxidant activity and mathematical modeling. The Journal of Supercritical Fluids, 82: 72-82.