اصول و مبانی الکتروپاشش و کاربرد آن در نانوریزپوشانی ترکیبات غذایی

نویسندگان
1 دانشجوی دکتری علوم و صنایع غذایی، گروه صنایع غذایی، دانشگاه آزاد اسلامی واحد دامغان، دامغان، ایران
2 استاد دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
3 استادیار گروه علوم و صنایع غذایی، موسسه آموزش عالی بهاران، گرگان، ایران
چکیده
ریز پوشانی یکی از مهم ترین فرآیندهایی است که به منظورریزپوشانی یکی از مهم­ترین فرآیندهایی است که به منظور بهبود پایداری شیمیایی ترکیبات معطر و فرار، جلوگیری از برهمکنش­های نامطلوب آنها با ترکیبات غذایی، و رهایش هوشمند آنها به درون محصول در صنعت غذا انجام می­گیرد. ریزپوشانی را می­توان به صورت فرآیند پوشاندن یک ماده درون ماده دیگر و در نتیجه تولید ذراتی با قطر چند نانومتر تا چند میلی متر تعریف نمود. با توجه به حساسیت ترکیبات زیست فعال، روش­های مختلفی برای ریزپوشانی وجود دارد که الکتروریزپوشانی یا انجام عملیات ریزپوشانی با استفاده از فرایندهای الکتروهیدرودینامیک (الکتروپاشش) به عنوان روشی ساده و مؤثر جهت حفظ و افزایش زیست دسترسی این دسته از ترکیبات معرفی شده که توانسته است طی سال­های اخیر مورد توجه محققین صنایع غذایی و دارویی قرار گیرد. الکتروپاشش به عنوان یکی از روش­های پاشش مایع به علت تولید قطرات با سایز بسیار ریز و توزیع یکسان از اهمیت بسیار بالایی برخوردار است. یکی از مزیت­های سامانه الکتروپاشش این است که کنترل بالایی روی توزیع و پراکندگی اندازه ذرات، با ذرات تقریبا یکنواخت وجود دارد. همچنین کپسول­های تهیه شده با دستگاه الکتروپاشش توانایی زیادی در جلوگیری از تخریب کاروتنوئیدها و ویتامین­ها و سایر ترکیبات حساس به حرارت دارند. در واقع در طی ریزپوشانی ترکیبات غذایی، آنزیمی و یا مواد دیگر (مانند انواع روغن­های فرار، مواد مولد طعم و رنگ، آنزیم­ها و غیره) در اندازه میکرو یا نانو توسط مواد دیواره که می­توانند انواع لیپیدها، بیوپلیمرهای پروتئینی و پلی ساکاریدی و یا کمپلکس آنها باشند احاطه و در برابر عوامل خارجی محافظت می­شوند. لذا در این مقاله سعی شده است، به معرفی جامع فرآیند الکتروپاشش، مبانی فرآیند، روش اجرا و کاربردهای آن در ریزپوشانی مواد غذایی که از اهمیت و جایگاه ویژه­ای در حوزه صنایع غذایی و دارویی برخوردار می­باشند، پرداخته شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Principles and Fundamentals of Electrospraying and its Applications in Encapsulation of Food Compounds

نویسندگان English

matin soleimanifar 1
Seid Mahdi Jafari 2
Elham Assadpour 3
1 PhD Student of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran.
2 . Professor, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciencesand Natural Resources, Gorgan, Iran
3 Assistant Professor, Department of Food Science and Technology, Baharan Institute of Higher Education, Gorgan,
چکیده English

Nanoencapsulation is one of the most important processes to improve the chemical stability of aromatic and volatile compounds, to prevent their undesirable interactions with food ingredients, and their intelligent release into the food industry. Encapsulation may be defined as the process to entrap one substance within another substance, thereby producing particles with diameters of a few nm to a few mm. Due to the sensitivity of the bioactive compounds, there are different encapsulation techniques. In recent years, electroencapsulation or encapsulation using electrohydrodynamic processes (electrospinning and elcrospraying) which is a simple and effective technique to preserve and increase bioavailibility of components, has attracted particular attention of food and drug scientists. Electrospray is very important as one of the liquid spraying methods due to the production of tiny droplets and uniform distribution. One of the advantages of the electrospray system is that it has high control over the particle size distribution, with the particles almost uniform. Electrospray capsules also have the potential to prevent the destruction of carotenoids and vitamins. In addition to the protective effects of encapsulation on nutrients, they can also be used to improve the fluidity, transport, and displacement properties of materials, since they are solid form rather than liquid. In fact, during the microencapsulation of nutrients, enzymes or other substances (such as volatile oils, taste and colorants, enzymes, etc.) in micro or nano size by wall materials that can form lipids, protein biopolymers and polysaccharides or their complex is surrounded and protected from external factors. This article briefly describes the properties of the electrospray method and its applications.

کلیدواژه‌ها English

Electrospray
Encapsulation
Food Ingredients
Bioactive compounds
[1] Mohammadi, A., Jafari, S.M., Esfanjani, A.F. and Akhavan, S. 2016. Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food chemistry, 190: 513-519.
[2] Bagheri, L., Shamekhi, M.A. and Kargozari, M. 2015. Encapsulation of Chamomile Extract in Nanoparticles Prepared via Anti-solvent Precipitation Technique. Journal of Food Processing and Preservation, 9 (1): 67-84.
[3] Jafari, S.M. 2017. Nanoencapsulation technologies for the food and nutraceutical industries, Academic Press.
[4] Tapia-Hernandez, J.A., Torres-Chavez, P.I., Ramirez-Wong, B., Rascon-Chu, A., Plascencia-Jatomea, M., Barreras-Urbina, C.G., Rangel-Vazquez, N.A. and Rodriguez-Felix, F. 2015. Micro-and nanoparticles by electrospray: advances and applications in foods. Journal of agricultural and food chemistry, 63(19): 4699-4707.
[5] López-Rubio, A. and J.M. Lagaron. 2012. Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innovative Food Science & Emerging Technologies, 13: 200-206.
[6] Alehosseini, A., Ghorani, B., Sarabi-Jamab, M. and Tucker, N. 2018. Principles of electrospraying: A new approach in protection of bioactive compounds in foods. Critical reviews in food science and nutrition, 58 (14): 2346-2363.
[7] Rayleigh, L. 1882. XX. On the equilibrium of liquid conducting masses charged with electricity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 14(87): 184-186.
[8] Zeleny, J. 1914. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 3(2): 69.
[9] Cloupeau, M. and Prunet-Foch, B. 1990. Electrostatic spraying of liquids: Main functioning modes. Journal of electrostatics, 25 (2). 165-184.
[10] Cloupeau, M. and Prunet-Foch, B. 1994. Electrohydrodynamic spraying functioning modes: a critical review. Journal of Aerosol Science, 25 (6): 1021-1036.
[11] Poulin, J.F., Caillard, R. and Subirade, M. 2011. Subirade, β-Lactoglobulin tablets as a suitable vehicle for protection and intestinal delivery of probiotic bacteria. International journal of pharmaceutics, 405(1-2): 47-54.
[12] Escamilla-García, M., Calderon, D. and Chanona- Perez, R.R. 2013. Physical and structural characterisation of zein and chitosan edible films using nanotechnology tools. International journal of biological macromolecules, 61: 196-203.
[13] Okutan, N. Terzi, P. and Altay, F. 2014. Altay, Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids, 39: 19-26.
[14] Gulfam, M., Kim, J. E., Lee, J. M., Ku, B., Chung, B. H. and Chung, B. G. 2012. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells. Langmuir. 21(28): 8216-8223.
[15] Gómez-Mascaraque, L.G. and López-Rubio, A. 2016. López-Rubio, Protein-based emulsion electrosprayed micro-and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives. Journal of colloid and interface science, 465: 259-270
[16] Kim, M.K., Jeong Yan, L., Hanjin, O., Dae Woong, S. and Hyo Won, K. 2015. Effect of shear viscosity on the preparation of sphere-like silk fibroin microparticles by electrospraying. International journal of biological macromolecules, 79: 988-995.
[17] Nagarajan, U., Kawakami, K., Zhang, Sh., Chandrasekaran, B. and Nair, B. U. 2014. Fabrication of solid collagen nanoparticles using electrospray deposition. Chemical and Pharmaceutical Bulletin, 62(5): 422-428.
[18] Gómez-Mascaraque, L.G., Lagarón, J.M. and López-Rubio, A. 2015. López-Rubio, Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocolloids, 49: 42-52.
[19] Qu, J., Liu, Y., Yu, Y., Li, J., Luo, J. and Li, M. 2014. Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin. Materials Science and Engineering: C. 44: 166-174.
[20] Gómez-Mascaraque, L.G. and López-Rubio, A. 2016. López-Rubio, Protein-based emulsion electrosprayed micro-and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives. Journal of colloid and interface science, 465: 259-270.
[21] Lin, C.C. and Anseth, K.S. 2009. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharmaceutical research, 26(3): 631-643.
[22] Gomez-Mascaraque, L.G., Morfin, R. C., Pérez-Masiá, R., Sanchez, G. and Lopez-Rubio, A. 2016. Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion. LWT-Food Science and Technology, 69: 438-446
[23] Pérez-Masiá, R., López-Nicolás, R., Periago, M.J., Ros, G., Lagaron, G.M. and López-Rubio, A. 2015. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chemistry, 168: 124-133.
[24] Laelorspoen, N., Wongsasulak, S., Yoovidhya, T. and Devahastin, S. 2014. Microencapsulation of Lactobacillus acidophilus in zein–alginate core–shell microcapsules via electrospraying. Journal of functional foods, 7: 342.
[25] Bhushani, J.A., Kurrey, N. K. and Anandharamakrishnan, C. 2017. Anandharamakrishnan, Nanoencapsulation of green tea catechins by electrospraying technique and its effect on controlled release and in-vitro permeability. Journal of food engineering, 199: 82-92.
[26] Asghari, S. M., Ebrahimi Samani, S., Seraj, Z., Khajeh, Kh. and Hosseinkhani, S. 2013. Optimization of chitosan nanoparticle synthesis. Journal of Biotechnology of Tarbiat Modarres University, 4 (2): 21-28.
[27] Ghaeb, M., Tavanai, H. and Kadivar, M. 2015. Electrosprayed maize starch and its constituents (amylose and amylopectin) nanoparticles. Polymers for Advanced Technologies, 26(8): 917-923.
[28] Coghetto, C.C., Brinques, G. B., Siqueira, N. M., Pletsch, J., Soares, R.M.D. and Ayub, M.A.Z. 2016. Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. Journal of Functional Foods, 24: 316-326.
[29] Khoshakhlagh, K., Koocheki, A., Mohebbi, M. and Allafchian, A. 2017. Development and characterization of electrosprayed Alyssum homolocarpum seed gum nanoparticles for encapsulation of d-limonene. Journal of colloid and interface science, 490: 562-575.
[30] Paximada, P., Echegoyen, Y., Koutinas, A., Mandala, I. and Lagaron, J.M. 2017. Encapsulation of hydrophilic and lipophilized catechin into nanoparticles through emulsion electrospraying. Food Hydrocolloids, 64: 123-132.
[31] Devarayan, K. and Kim, B.S. 2015. Reversible and universal pH sensing cellulose nanofibers for health monitor. Sensors and Actuators B: Chemical, 209: 281-286.
[32] Zhang, X., Kobayashi, I., Uemura, K. and Nakajima, M. 2013. Direct observation and characterization of the generation of organic solvent droplets with and without triglyceride oil by electrospraying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436: 937-943
[33] Pérez-Masiá, R., Lagaron, J.M. and Lopez-Rubio, A. 2015. Morphology and stability of edible lycopene-containing micro-and nanocapsules produced through electrospraying and spray drying. Food and Bioprocess Technology, 8(2): 459-470.
[34] Eltayeb, M., Stride, E. and Edirisinghe, M. 2013. Edirisinghe, Electrosprayed core–shell polymer–lipid nanoparticles for active component delivery. Nanotechnology, 24(46): 465604.
[35] Wang, K. and Stark, J.P. 2010. Voltage effects on the nanoelectrospray characteristics in fully voltage-controlled atomisation of gold nanocolloids. Analytica chimica acta, 679(1-2): 81-84.
[36] Jain, E., Scott, K.M., Zustiak, S.P. and Sell, S.A. 2015. Fabrication of Polyethylene Glycol‐Based Hydrogel Microspheres Through Electrospraying. Macromolecular Materials and Engineering, 300(8): 823-835.
[37] Guo, Q., Mather, J.P., Yang, P., Boden, M. and Mather, P.T. 2015. Fabrication of polymeric coatings with controlled microtopographies using an electrospraying technique. PloS one. 10(6): e0129960.
[38] Ghorani, B. and Tucker, N. 2015. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids, 51: 227-240.
[39] Jones, O., Decker, E.A. and McClements, D.J. 2010. McClements, Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocolloids, 24(2-3): 239-248.