تأثیر دمای خشک کردن بر مصرف انرژی فرآیند و شاخص‌های کیفی پیاز

نویسندگان
1 دانشجوی دکتری گروه مهندسی مکانیک بیوسیستم دانشگاه شیراز، شیراز، ایران
2 استادیار، گروه مهندسی مکانیک بیوسیستم، دانشگاه جیرفت، جیرفت، ایران
3 دانشجوی دکتری گروه مهندسی مکانیک بیوسیستم دانشگاه تربیت مدرس، تهران، ایران
چکیده
در مطالعه حاضر، تأثیر دمای خشک کردن بر مصرف انرژی فرآیند و ویژگی‌های کیفی پیاز شامل ظرفیت بازجذب آب، محتوی ویتامین C و ترکیبات تام فنلی بررسی شد. ورقه‌های پیاز با ضخامت 3 میلی‌متر در یک خشک‌کن هوای گرم در دماهای 40 تا 70 درجه سلسیوس خشکانده شدند. انرژی مصرفی ویژه و راندمان مصرف انرژی با افزایش دما به صورت معنی‌دار (در سطح 5 درصد) بهبود یافته و به ترتیب در محدوده‌های 83/35‒33/59 مگا‌‌‌ژول بر کیلوگرم و 01/4‒52/6 درصد به دست آمدند. افزایش دمای هوا باعث بهبود معنی‌دار (در سطح احتمال 5 درصد) شاخص‌های مصرف انرژی شد. ظرفیت بازجذب آب در نمونه‌های پیاز خشک شده از 01/4 درصد (برای دمای هوای 40 درجه سلسیوس) تا 52/6 درصد (برای دمای هوای 70 درجه سلسیوس) متغیر بود. محتوی ویتامین C در نمونه‌های تازه 19/50 و در نمونه‌های خشک از 92/14 تا 38/21 میلی‌گرم در 100 گرم ماده خشک متغیر بود. محتوی تام ترکیبات فنلی با استفاده از روش فولین-سیکالتیو اندازه‌گیری و مشاهده شد که مقدار این ترکیبات در پیاز تازه (6/389 میلی‌گرم گالیک اسید در 100 گرم ماده خشک) بعد از خشک شدن به شدت کاهش یافت (3/212‒8/295 میلی‌گرم گالیک اسید در 100 گرم ماده خشک). بر اساس نتایج به دست آمده، خشک کردن پیاز در دماهای بالاتر منجر به تخریب بیشتر محتوی ویتامین C و ترکیبات فنلی آن شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Influence of Drying Temperature on Energy Consumption of the Process and Quality Indices of onion

نویسندگان English

Hadi Azimi-Nejadian 1
Farhad Khoshnam 2
Hossein Balanian 3
1 Biosystems Engineering Department, College of Agriculture, Shiraz University, Shiraz, Iran
2 Mechanical Engineering of Biosystems, Faculty of Agricultural, University of Jirof, 78671-61167, Jiroft, Iran
3 Biosystems Engineering Department, College of Agriculture, Tarbiat Modares University, Tehran, Iran
چکیده English

In the present study, the influence of drying temperature on energy consumption and qualitative characteristics of onion including rehydration capacity, vitamin C content and total phenolic content (TPC) was investigated. Onion slices with 3 mm thickness was dried in a hot air dryer at temperatures 0f 40‒70 °C. Specific energy consumption and energy efficiency were significantly (P < 0.05) improved by increasing temperature and obtained to be in the range of 35.83‒59.33 MJ/kg and 4.01‒6.52%, respectively. Increasing air temperature resulted in significant (p < 0.05) improvement in energy consumption indices. Rehydration capacity in the dried onion samples varied from 4.01% (at drying temperature of 40 °C) to 6.52 (at drying temperature of 70 °C). Vitamin C content in fresh samples was 50.19, and in dried samples varied from 14.92 to 21.38 mg/100 g dry matter. TPC was measured using Foline–Ciocalteu reagent and found that the TPC in fresh onions (389.6 mg GAE/100 dry matter) was significantly (p < 0.05) decreased in the dried samples (212.3‒295.8 mg GAE/100 dry matter). Based on the obtained results, drying of the onions at higher temperatures led to more deterioration in vitamin C content and the TPC.

کلیدواژه‌ها English

Onion
drying temperature
Energy efficiency
Rehydration Capacity
Vitamin C
Total phenolics content
[1] Torki-Harchegani M, Ghasemi-Varnamkhasti M, Ghanbarian D, Sadeghi M, Tohidi M. Dehydration characteristics and mathematical modeling of lemon slices drying undergoing oven treatment. Heat and Mass Transfer. 2016; 52(2): 281‒289.
[2] Motevali A, Abbaszadeh A, Minaei S, Khoshtaghaza MH, Ghobadian B. Effective moisture diffusivity, activation energy and energy consumption in thin-layer drying of Jujube (Zizyphus jujube Mill). Journal of Agricultural Science and Technology. 2012; 14(3): 523–532.
[3] Sharma GP, Verma RC, Pathare PB. Thin-layer infrared radiation drying of onion slices. Journal of Food Engineering. 2005; 67(3): 361–366.
[4] Arsalan D, Özcan MM. Study the effect of sun, oven and microwave drying on quality of onion slices. LWT‒Food Science and Technology. 2010; 43(7): 1121–1127.
[5] Begherloo M, Heidari R, Ghaderpour S, Jamei R. Antioxidant activities of the methanolic extracts of several varieties of Iranian onion and theirs scavenging effect on free radicals. Journal of Food Research. 2011; 21(4): 455-465. [full text in Persian]
[6] Torki-Harchegani M, Ghanbarian D, Ghasemi Pirbalouti A, Sadeghi M. Dehydration behavior, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments. Renewable and Sustainable Energy Reviews. 2016; 58: 407–418.
[7] Tohidi M, Sadeghi M, Torki-Harchegani M. Energy and quality aspects for fixed deep bed drying of paddy. Renewable and Sustainable Energy Reviews. 2017; 70: 519–528.
[8] Beigi, M. Energy efficiency and moisture diffusivity of apple slices during convective drying. Food Science and Technology. 2016; 36(1): 145‒150.
[9] Khanali M, Banisharif A, Rafiee S. Modeling of moisture diffusivity, activation energy and energy consumption in fluidized bed drying of rough rice. Heat and Mass Transfer. 2016; 52(11): 2541‒2549.
[10] Takougnadi E, Tchamye Boroze T-E, Azouma OY. Development of an intermittent drying process of onion. Cogent Food & Agriculture. 2018; 4(1): https://doi.org/10.1080/23311932.2017.1422225
[11] Beigi M. Drying of mint leaves: Influence of the process temperature on dehydration parameters, quality attributes, and energy consumption. Journal of Agricultural Science and Technology. 2019; 21(1): 77–88.
[12] Izli N, Izli G, Taskin O. Influence of different drying techniques on drying parameters of mango. Food Science and Technology. 2017; 37(4): 604‒612.
[13] Rezvani Aghdam A, Aleomrani Nezhad SMH, Khazaei J. The assessment of temperature and sample size on color variations, pirovic aid and allicin in local Shushtar garlic after drying. Journal of Food Technology and Nutrition. 2016; 13(2): 99‒107. [full text in Persian]
[14] Shahdadi F, Mirzaei H, Maghsoudlou Y, Ghorbani M, Daraei Garmakhany A. Effect of drying process on the phenolic-compounds content and antioxidant activity of two varieties of date-palm fruit Kaluteh and Mazafati. Journal of Nutrition Sciences and Food Technology. 2011; 6(3): 67‒74. [full text in Persian]
[15] Farahian N, Azadmard-Damirchi S. Effect of different pretreatments before hot air drying of onion on its powder quality during storage. Journal of Food Science and Technology. 2018; 6(15): 103‒110. [full text in Persian]
[16] Mozaffary M, Solaimani J, Asefi N, Jafarian P. Effect of Osmo-air drying on quality of dried onion. Food Hygiene Quarterly Scientific Journal. 2011; 1(2): 49‒60. [full text in Persian]
[17] Armand AB, Scher J, Aboubakar, Augustin G, Roger P, Montet D, Moses MC. Effect of three drying methods on the physicochemical composition of three varieties of onion (Allium cepa L). Journal of Food Science and Nutrition. 2018; 1(2): 17‒24.
[18] Lu X, Wang J, Al-Qadiri HM, Ross CF, Powers JR, Tang J, Rasco BA. Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chemistry. 2011; 129(2): 637‒644.
[19] Khoshtaghaza MH, Darvishi H, Minaei S. Effects of microwave-fluidized bed drying on quality, energy consumption and drying kinetics of soybean kernels. Journal of Food Science and Technology. 2015; 52(8): 4749–60.
[20] Darvishi H. Energy consumption and mathematical modeling of microwave drying of potato slices. Agricultural Engineering International: CIGR Journal. 2012; 14(1): 94–102.
[21] Beigi M. Thin layer drying of wormwood (Artemisia absinthium L.) leaves: dehydration characteristics, rehydration capacity and energy consumption. Heat and Mass Transfer. 2017; 53(8): 2711–2718.
[22] Azimi-Nejadian H, Hosseini SS. Study the effect of microwave power and slices thickness on drying characteristics of potato. Heat and Mass Transfer. 2019; 55(10): 2921‒2930.
[23] Motevali A, Minaei S, Banakar A, Ghobadian B, Khoshtaghaza MH. Comparison of energy parameters in various dryers. Energy Conversion and Management. 2014; 87: 711–25.
[24] Alibas I. Energy consumption and colour characteristics of nettle leaves during microwave, vacuum and convective drying. Biosystems Engineering. 2007; 96(4): 495–502.
[25] Zhou X, Ramaswamy H, Qu Y, Xu R, Wang S. Combined radio frequency-vacuum and hot air drying of kiwifruits: Effect on drying uniformity, energy efficiency and product quality. Innovative Food Science and Emerging Technologies. 2019; 56: https://doi.org/10.1016/j.ifset.2019.102182
[26] Sahoo NR, Bal LM, Pal US, Sahoo D. Impact of pretreatment and drying methods on quality attributes of onion shreds. Food Technology and Biotechnology. 2015; 53(1): 57–65.
[27] Sacilik K, Elicin AK. The thin layer drying characteristics of organic apple slices. Journal of Food Engineering. 2006; 73(3): 281–289.
[28] Noshad M, Mohebbi M, Shahidi F, Mortazavi S. A. Kinetic modeling of rehydration in air-dried quinces pretreated with osmotic dehydration and ultrasonic. Journal of Food Processing and preservation. 2012; 36(5): 383–392.
[29] Aral S, Bese A. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters in drying kinetics, color, shrinkage, and rehydration capacity. Food Chemistry. 2016; 210(1): 577–584.
[30] Izli N, Polat A. Effect of convective and microwave methods on drying characteristics, color, rehydration and microstructure properties of ginger. Food Science and Technology. 2019; 39(3): 652‒659.
[31] Seifu M, Tola YB, Mohammed A, Astatkie T. Effect of variety and drying temperature on physicochemical quality, functional property, and sensory acceptability of dried onion powder. Food Science and Nutrition. 2018; 6(6): 1641‒1649.
[32] Zirjani L, Tavakolipour H. Influence of different drying conditions on dried banana properties by hot air. Innovation in Food Science and Technology. 2009; 1(1): 71‒86. [full text in Persian]
[33] Pashaei Bahram R, Azadmard Damirchi S, Hesari J, Peighambardoust SH, Bodbodak S, Farmani B. Effecet of drying methods on physic-chemical and bioactive compounds of cornelian cherry. Journal of Food Science and Technology. 2017; 67(14): 191‒201. [full text in Persian]
[34] Ostadzadeh SH, Sayyed-Alangi Z. Effect of drying process on qualitative and quantitative properties of waterdress (Nasturtium officinale) leaves. Innovative Food Technologies. 2016; 4(1): 1‒16.
[35] Nuutila AM, Puupponen-Pimiä R, Arani M, Oksman-Caldentey KM. Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chemistry. 2003; 81(4): 485‒493.
[36] Prakash D, Singh BN, Upadhyay G. Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chemistry. 2007; 102(4): 1389‒1393.
[37] Santas J, Carbó R, Gordon MH, Almajano MP. Comparison of the antioxidant activity of two Spanish onion varieties. Food Chemistry. 2008; 107(3): 1210‒1216.
[38] Akyıldız A, Aksay S, Benli H, Kıroğlu F, Fenercioğlu H. Determination of changes in some characters of persimmon during dehydration at different temperatures. Journal of Food Engineering. 2004. 65(1): 95‒99.
[39] Zanoelo EF, Cardozo-Filho L, Cardozo-Junior EL. Superheated steam drying of mate leaves and effect of drying conditions on the phenol content. Journal of Food Process Engineering. 2006; 29(3): 253‒268.
[40] Qu W, Pan Z, Ma H. Extraction modeling and activities of antioxidants from pomegranate marc. Journal of Food Engineering. 2010; 99(1): 16–23.
[41] Torres CD, Diaz-Maroto MC, Hermosin-Gutierrez I, Perez-Coello MS. Effect of freeze-drying and oven drying on volatiles and phenolics composition of grape skin. Food Chemistry. 2010: 660(1-2): 177–182
[42] Harboune N, Marete E, Jacquier JC, O’Riordan D. Effect of drying methods on the phenolic constituents of meadowsweet (Filipendula ulmaria) and willow (Salix alba). Food Chemistry. 2009; 42(9): 1468–1473.
[43] Rakić S, Petrović S, Kukić J, Jadranin M, Tešević V, Povrenović D, Šiler-Marinković S. Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia. Food Chemistry. 2007; 104(2): 830‒834.