تولید گاما آمینو بوتریک اسید توسط باکتری Lactococcus lactis NZ1330 در محیط کشت حاوی لجن لبنی و مونوسدیم گلوتامات

نویسندگان
1 استادیارگروه علوم و مهندسی صنایع غذایی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران
2 دانشجوی دکتری گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
3 استاد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
چکیده
گاما آمینو­بوتریک­اسید (گابا)، مولکول زیست فعال با نقش­های فیزیولوژیکی مختلف در بدن است که با مهار تحریکات نورون و ممانعت از رسیدن پیام های حاوی ترکیبات استرس­زا، دارای خواص آرامش بخشی بوده و در درمان بیماری­های مختلف نقش موثری دارد. در پژوهش حاضر، امکان تولید این اسید آمینه توسط باکتری Lactococcus lactis NZ1330 بررسی شد. به منظور بهینه­سازی فرآیند تخمیر سه سطح از لجن لبنی(5،10،15 درصد)، مونو سدیم گلوتامات (0، 5/0 و 1 درصد) در زمان­های 24، 48 و 72 ساعت انتخاب شد و پس از تخمیر، وجود گابا در محیط کشت به وسیله کروماتوگرافی لایه نازک بررسی شد. برای کمی سازی باندهای موجود در کروماتوگرافی لایه نازک از روش اسپکتروفتومتری استفاده شد. نتایج بهینه­سازی در سطح معنی داری 95 درصد نشان داد تیمار بهینه شامل محیط کشت حاوی 2/11درصد لجن لبنی،7/0 درصد مونوسدیم گلوتامات و زمان 70 ساعت تخمیر در دمای °C 32 بوده و تحت این شرایط تولید گابا به میزان ppm 400 می­باشد. بنابراین از این ترکیب محیط کشت می­توان به عنوان سوبسترای مناسب جهت تولید ترکیب دارویی و زیست فعال ارزشمند گابا استفاده کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Gamma-aminobutyric acid Synthesis by Lactococcus lactis strain Nz1330 in Dairy sludge medium with Monosodium glutamate

نویسندگان English

Behrooz Alizadeh behbahani 1
Fereshteh Falah 2
Alireza Vasiee 2
farideh tabatabaei yazdi 3
Seyed Ali Mortazavi 3
1 Assistant professor, Department of Food Science and Technology, Faculty of Animal Science and Food
2 Ph.D. Student, Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Professor, Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده English

Gamma Aminobutyric Acid (GABA) is a bioactive molecule with different physiological roles in the body that inhibits neuronal stimulation and inhibits the delivery of stress-containing messages, has a calming effect and is used to treat diseases. Different has an effective role. In the present study, the possibility of producing this amino acid by Lactococcus lactis NZ1330 was investigated. In order to optimize the fermentation process three levels of dairy sludge (5,10,15%), monosodium glutamate (0, 0.5 and 1%) were selected at 24, 48 and 72 hours after fermentation. The presence of GABA in the culture medium was investigated by thin layer chromatography. Spectrophotometric method was used to quantify the bands present in thin-layer chromatography. Optimization results at 95% significance level showed that the optimum treatment consisted of medium containing 11.2% dairy sludge, 0.7% monosodium glutamate and 70 hours fermentation at 32 ° C and under these conditions, GABA production was ppm. It's 400. Therefore, this combination of media can be used as a suitable substrate for the production of valuable GABA drug and bioactive compounds

کلیدواژه‌ها English

GABA
Lactococcus
Dairy sludge
Monosodium glutamate
1. Lener MS, Niciu MJ, Ballard ED, Park M, Park LT, Nugent AC, et al. Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biological psychiatry. 2017;81(10):886-97.
2. Castroviejo A, Rosenstein RE, Romeo H, Cardinali D. Changes in gamma-aminobutyric acid high affinity binding to cerebral cortex membranes after pinealectomy or melatonin administration to rats. Neuroendocrinology. 1986;43(1):24-31.
3. Cui B, Su D, Li W, She X, Zhang M, Wang R, et al. Effects of chronic noise exposure on the microbiome-gut-brain axis in senescence-accelerated prone mice: implications for Alzheimer’s disease. Journal of neuroinflammation. 2018;15(1):190.
4. Thomas P, Phillips J, Delanty N, O’Connor W. Elevated extracellular levels of glutamate, aspartate and gamma-aminobutyric acid within the intraoperative, spontaneously epileptiform human hippocampus. Epilepsy research. 2003;54(1):73-9.
5. Rashidi A, Ahmadi S. Subunits of gamma-aminobutyric acid receptors and their roles in neuropsychological disorders. Shefaye Khatam. 2014;2(2):70-80.
6. Falah F. Evaluation of probiotic potential of Lactobacillus brevis and optimization of Gamma Amino Butyric Acid production by this strain in dairy sludge base medium. Mashhad: Ferdowsi University Of Mashhad; 2019.
7. Vasiee A, Yazdi TF, Mortazavi A, Edalatian M. Isolation, identification and characterization of probiotic Lactobacilli spp. from Tarkhineh. International Food Research Journal. 2014;21(6):2487.
8. Vasiee A, Behbahani BA, Yazdi FT, Mortazavi SA, Noorbakhsh H. Diversity and probiotic potential of lactic acid bacteria isolated from horreh, a traditional Iranian fermented food. Probiotics and antimicrobial proteins. 2018;10(2):258-68.
9. TABATABAEI YF, VASIEE A, ALIZADEH BB, MORTAZAVI S. Diversity of lactic acid bacteria isolated from yellow zabol kashk using 16S rRNA Gene Sequence Analysis. 2017.
10. Song AA-L, In LL, Lim SHE, Rahim RA. A review on Lactococcus lactis: from food to factory. Microbial cell factories. 2017;16(1):55.
11. Zhang Y, Wang XC, Cheng Z, Li Y, Tang J. Effect of fermentation liquid from food waste as a carbon source for enhancing denitrification in wastewater treatment. Chemosphere. 2016;144:689-96.
12. Zhuang K, Jiang Y, Feng X, Li L, Dang F, Zhang W, et al. Transcriptomic response to GABA-producing Lactobacillus plantarum CGMCC 1.2437 T induced by L-MSG. PloS one. 2018;13(6):e0199021.
13. Vasiee A, Mortazavi SA, Sankian M, Yazdi FT, Mahmoudi M, Shahidi F. Antagonistic activity of recombinant Lactococcus lactis NZ1330 on the adhesion properties of Escherichia coli causing urinary tract infection. Microbial pathogenesis. 2019;133:103547.
14. Yadav SK, Juwarkar AA, Kumar GP, Thawale PR, Singh SK, Chakrabarti T. Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresource Technology. 2009;100(20):4616-22.
15. Kook M-C, Cho S-C. Production of GABA (gamma amino butyric acid) by lactic acid bacteria. Korean Journal for Food Science of Animal Resources. 2013;33(3):377-89.
16. Sethi ML. Enzyme inhibition X: colorimetric method for determining gabase activity and its comparison with a spectrophotometric method. Journal of pharmaceutical and biomedical analysis. 1993;11(7):613-7.
17. Jo M-H, Hong S-J, Lee H-N, Ju J-H, Park B-R, Lee J-h, et al. Gamma-Aminobutyric Acid Production from a Novel Enterococcus avium JS-N6B4 Strain Isolated from Edible Insects. Journal of microbiology and biotechnology. 2019;29(6):933-43.
18. Casalia ML, Howard MA, Baraban SC. Persistent seizure control in epileptic mice transplanted with gamma‐aminobutyric acid progenitors. Annals of neurology. 2017;82(4):530-42.
19. Harris RA, Allan AM. Functional coupling of gamma-aminobutyric acid receptors to chloride channels in brain membranes. Science. 1985;228(4703):1108-10.
20. Mann JJ, Oquendo MA, Watson KT, Boldrini M, Malone KM, Ellis SP, et al. Anxiety in major depression and cerebrospinal fluid free gamma‐aminobutyric acid. Depression and anxiety. 2014;31(10):814-21.
21. Diana M, Quílez J, Rafecas M. Gamma-aminobutyric acid as a bioactive compound in foods: a review. Journal of Functional Foods. 2014;10:407-20.
22. Lu X, Chen Z, Gu Z, Han Y. Isolation of γ-aminobutyric acid-producing bacteria and optimization of fermentative medium. Biochemical Engineering Journal. 2008;41(1):48-52.
23. Tamura T, Noda M, Ozaki M, Maruyama M, Matoba Y, Kumagai T, et al. Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves. Biological and Pharmaceutical Bulletin. 2010;33(10):1673-9.
24. Li H, Qiu T, Gao D, Cao Y. Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino acids. 2010;38(5):1439-45.
25. Eskandari Elham MSA, Kozaki Arash, Tabatabai Farideh. Optimization of Exopolysaccharide Production by Rhizubium radiobacter PTCC ۱۶۵۴ in Dairy Sludge Using Response Surface Methodology. Food Science and Technology. 2018;15(81):201-15.
26. Kim T-J, Sung C-H, Kim Y-J, Jung B-M, Kim E-R, Choi W-S, et al. Effects of a Soaking-Fermentation-Drying Process on the Isoflavone and ${gamma} $-Aminobutyric acid Contents of Soybean. Food Science and Biotechnology. 2007;16(1):83-9.
27. Han S-m, Jeon S-J, Lee H-B, Lee J-s. Screening of γ-aminobutyric acid (GABA)-producing wild yeasts and their microbiological characteristics. 한국균학회지. 2016;44(2):87-93.
28. Jung WY, Kim SG, Kim HK, Lee JS, Han SI, Choe S, et al. Effect of GABA Extract of Black Sticky Rice with Giant Embryo on Alcohol‐Related Indices After Acute Alcohol Intake in Social Drinkers. Alcoholism: Clinical and Experimental Research. 2015;39(7):1212-8.
29. Lee H-L, Kang K-W, Seo D-H, Jung J-H, Jung D-H, Kim G-W, et al. Diversity of lactic acid bacteria (LAB) in makgeolli and their production of γ-aminobutyric acid. Korean Journal of Food Science and Technology. 2015;47(2):204-10.
30. Chong WDLHW, Jianxin L. Preparation and Stability of Rumen Protected γ-aminobutyric Acid [J]. Chinese Journal of Animal Nutrition. 2010;5.
31. Ko CY, Lin H-TV, Tsai GJ. Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochemistry. 2013;48(4):559-68.
32. Lacroix N, St-Gelais D, Champagne C, Vuillemard J. Gamma-aminobutyric acid-producing abilities of lactococcal strains isolated from old-style cheese starters. Dairy Science & Technology. 2013;93(3):315-27.
33. Kook M-C, Cho S-C, Kang J, Song Y, Park H. Effect of gamma-aminobutyric acid produced by Lactobacillus sakei B2-16 on diet and exercise in high fat diet-induced obese rats. Food Science and Biotechnology. 2014;23(6):1965-70.
34. Wang HK, Dong C, Chen YF, Cui LM, Zhang HP. A new probiotic cheddar cheese with high ACE-inhibitory activity and γ-aminobutyric acid content produced with koumiss-derived Lactobacillus casei Zhang. Food Technology and Biotechnology. 2010;48(1):62-70.
35. Zareie Z, Yazdi FT, Mortazavi SA. Optimization of gamma-aminobutyric acid production in a model system containing soy protein and inulin by Lactobacillus brevis fermentation. Journal of Food Measurement and Characterization. 2019:1-11.
36. Lee H-S, Kwon S-Y, Lee S-O, Lee S-P. Production of fermented Omija (Schizandra chinensis) beverage fortified with high content of gamma-amino butyric acid using Lactobacillus plantarum. Korean Journal of Food Preservation. 2016;23(3):326-34.