[1] Luck, H., Screed. D. 2002. The use of hydrojenpeoxide in milk and Dairy products. German research institute for food chemistry, 423-452.
[2] Loveland, J.W. 1986. Conductance and oscillometry. 2nd ed., USA: Allyn and Bacon, p. 122-43.
[3] Mabrook, M. F., Petty, M. C. 2002. Application of electrical admittance measurements to the quality control of milk. Sensors and Actuators B, 84: 136–141.
[4] Maatje, K., Huijsmans, P. J. M., Rossing, W., Hogewerf, P. H. 2002. The efficacy of in-line measurement of quarter milk electrical conductivity, milk yield and milk temperature for the detection of clinical and subclinical mastitis. Livest Prod Sci, 30: 239-249.
[5] Crow, D. R. 1994. Principles and application of electro chemistry. 4th ed. Glasgow: Blackie Academic and Professional. Glasgow, UK.
[6] Gelais, D., Champagne, C. P., Erepmoc, F., Audet, P. 1995. The use of electrical conductivity to follow acidifcation of dairy blends. Int Dairy J, 5: 427 438.
[7] Prentice, J.H. 1962. The conductivity of milk the effect of the volume and degree of dispersion of the fat. J Dairy Res, 2: 131 139.
[8] Mabrook, M., Petty, M. 2003. Effect of composition on the electrical conductivity of milk. J Food Eng, 69 (3): 321-325.
[9] Lampert, I.M. 1978. Modern Dairy Products. 3th ed. CRC.USA, p. 92- 132.
[10] Nielen, M., Deluyker, H., Schukken, Y. H., Brand, A. 1992. Electrical conductivity of milk: measurement, modifers, and meta analysis of mastitis detection performance. J Dairy Sci, 75 (2): 606 614.
[11] Petzer, I. M., Donkin, E. F., Du Preez, E., Karzis, J., Van der Schans, T. J., Watermeyer, J.C., Reenen, R. 2008. Value of tests for evaluating udder health in dairy goats: somatic cell counts, California Milk Cell Test and electrical conductivity. Onderstepoort. J Vet Res, 75: 279– 287.
[12] Norberg, E., Hogeveen, H., Korsgaard, I.R., Friggens, N.C., Lbvendahl, P. 2004. Electrical conductivity of milk: ability to predict mastitis status. J. Dairy Sci, 87: 1099–1107.
[13] Zhuang, W., Zhou, W., Nguyen, M.H., Hourigan, J.A. 1997. Determination of protein content of whey powder using electrical conductivity measurement. Int Dairy J, 7(10): 647 653.
[14] Dejmek, P. 1989. Precision conductometry in milk renneting. J Dairy Res, 56 (1): 69-78.
[15] Paqurt, Y. 2000. Electrical conductivity as a tool for analyzing fermentation processes for production of cheese starters. Int Dairy J, 10: 391-399.
[16] Farkas,I., Remenyi, P. & Biro, A. 2000. Modeling aspects of grain drying with a neural network. Computers and Electronics in Agriculture, 29, 99-113.
[17] Menhaj, M. B. 2005. Fundamentals of Artificial Neural Networks. 3th ed. Amirkabir University of Technology Publishers. 718 p. (In Farsi).
[18] Therdthai, N., Zhou, W. 2001. Artificial neural network modeling of the electrical conductivity property of recombined milk, 15(6 8): 1743 1752.
[19] Shin, J.,Yang, D., Gan, L., Hong, S., Lee, E., Park, S., Lee, K. 2012. Preparation of recombined milk using modified butterfats containing α-linolenic acid. Journal of Food Science, 78(1): 17-24.
[20] Schalkoff, R. J. 1997. Artificial neural networks, McGraw-Hill. 422 p.
[21] Khoshtaghaza, M. H., Hosseinzadeh, B., Fayyazi, E., Amirnejat, H. 2016. Prediction of thin layer drying of edible mushroom moisture content by feed forward artificial neural networks method. Journal of Food Science and Technology, 13 (50), 171-182. (In Farsi).
[22] Dayhoff J. E. 1990. Neural Network Principles. Prentice-Hall International, U.S.A.
[23] Nazghelichi, T., Kianmehr, M. H., Aghbashlo, M. 2011. Prediction of carrot cubes drying kinetics during fluidized bed drying by artificial neural network. Journal of food science and technology. 48(5): 542-550.
[24] Sharifi, M., Rafiee, Sh., Kayhani, A., Omid, M. 2010. Kinetic model simulation of thin-layer drying of orange fruit (var. Thompson) using artificial neural network. Journal of Food Science and Technology, 7 (24): 39-49. (In Farsi).
[25] Fazaeli, M., Emam, Z., Omid, M., Kalbasi, A. 2013. Prediction of the Physicochemical Properties of Spray-Dried Black Mulberry (Morus nigra) Juice using Artificial Neural Networks. Food Bioprocess Technol. 6(2): 585-590.
[26] Islam, M. R., Sablani, S. S., Mujumdar. A. S. 2003. An artificial neural network model for prediction of drying rates. Drying Technology, 21, 9: 1867-1884.
[27] Amiri Chayjan, R. 2006. Smart prediction of paddy drying process for optimization of process. doctorate dissertation. Biosystem Engineering. Tarbiat Modares University. Tehran. (In Farsi).