مطالعه تاثیر ضخامت فوم بر ضریب انتشار موثر رطوبت و سینتیک خشک شدن چغندر قرمز به روش فوم مت و ارزیابی ویژگی های کیفی و عملکردی محصول

نویسندگان
1 گروه علوم و صنایع غذایی، دانشکدۀ کشاورزی، دانشگاه تبریز
2 گروه مهندسی بیوسیستم، دانشکدۀ کشاورزی، دانشگاه تبریز
چکیده
هدف از این مطالعه، تولید پودر پالپ چغندر‌قرمز با استفاده از تکنیک خشک‌کردن فوم‌مت و بررسی اثر ضخامت فوم بر سینتیک‌ ‌خشک ‌شدن و ویژگی‌های فیزیکوشیمیایی و ریزساختاری پودر حاصل بود. جهت تهیۀ فوم، اووآلبومین با غلظت 2% (وزنی/حجمی) به عنوان عامل فوم ساز به پالپ چغندر قرمز اضافه شده و برای مدت و سرعت مشخصی تحت همزنی قرار گرفت. فوم تهیه‌شده در ضخامت‌های 5، 6 و 7 میلی‌متر بر روی پلیت‌های آلومینیومی گسترده ‌شده و سپس، در یک‌ خشک‌کن کابینتی با هوای داغ در دمای 50 درجۀ سانتی‌گراد و سرعت هوای ثابت 1 متر بر ثانیه خشک گردید. نتایج نشان داد افزایش ضخامت فوم از 5 به 7 میلی‌متر تاثیر معناداری بر نسبت و محتوای رطوبت نداشته ولی سبب کاهش معنی‌دار (05/0p <) نرخ خشک‌کردن به میزان 63/29‌ % گردید. ضریب انتشار موثر رطوبت به طور معناداری تحت تاثیر ضخامت فوم قرار گرفت و محدوده آن از 9-10 ´ 550/5 تا 9-10 ´ 388/7 متر مربع بر ثانیه متغیر بود. همچنین با افزایش ضخامت فوم، به‌دلیل افزایش زمان خشک‌شدن و دناتوراسیون بیشتر پروتئین‌ها، یک روند افزایشی در شاخص کار و نسبت هوسنر و درنتیجه روند کاهشی در جریان پذیری پودرها مشاهده شد. دانسیته توده ای و ضربه ای پودرها به دلیل تغییر محتوای رطوبت ناشی از افزایش در ضخامت فوم، به طور معناداری کاهش یافتند. ضخامت تأثیر معنی‌داری بر شاخص حلالیت در آب و شاخص جذب آب نداشت. بررسی ریز ساختار پودرهای تولید شده با میکروسکوپ الکترونی روبشی نشر میدانی نشان داد که با افزایش ضخامت فوم، ترک‌خوردگی و زبری سطحی ذرات پودر افزایش یافت. نتایج این مطالعه و مطالعات تکمیلی می تواند به بهینه سازی تولید پودر چغندر قرمز به عنوان رنگ دهنده طبیعی مواد غذایی و حفظ بهتر ویژگی های تغذیه ای و عملکردی آن منجر شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Study of the foam thickness effect on the effective moisture diffusion coefficient and drying kinetics of red beetroot by foam-mat method and evaluation the qualitative and functional characteristics of product

نویسندگان English

Golnaz Bahriye 1
Saeed Dadashi 1
Jalal Dehghannya 1
Hossein Ghaffari 2
1 Department of Food Science and Technology, Tabriz University
2 Department of Biosystems Engineering, Tabriz University
چکیده English

The purpose of this study was to produce red beetroot pulp powder using foam-mat drying technique and to investigate the effect of foam thickness on drying kinetics and physicochemical and microstructural properties of the resulting powder. To prepare foam, ovalbumin as foaming agent at a concentration of 2% (w / v) was added to the red beetroot pulp and was stirred for a specific time and speed. Prepared foam was spread on aluminum plates at thicknesses of 5, 6 and 7 mm and then dried in a hot air cabinet dryer at 50 ºC and constant air velocity of 1 m/s. Results showed that increasing foam thickness from 5 to 7 mm had no significant effect on moisture content and moisture ratio but significantly (p <0.05) reduced the drying rate by about 29.63%. The effective moisture diffusion coefficient was significantly affected by the foam thickness and ranged between 5.550 × 10−9 and 7.388 × 10−9 m2/s. Also, with increasing foam thickness, due to increasing drying time and more denaturation of proteins, an increase in Carr index and Hausner ratio was observed, resulting in a decreasing trend in the flowability of the powders. Bulk and tapped densities of powders were significantly decreased due to the change in moisture content, caused by the increase in foam thickness. Thickness had no significant effect on water solubility index and water absorption index. The microstructure analysis of the produced powders by field emission scanning electron microscope showed that with increasing foam thickness, cracking and surface roughness of powder particles increased. The results of this study and further studies can lead to optimization of red beetroot powder production as a natural food coloring and better preservation of its nutritional and functional properties.

کلیدواژه‌ها English

Foam-mat drying
Red beetroot powder
Drying kinetics
Effective moisture diffusion coefficient
Functional properties
[1] Nistor, O.V., Serement, L., Andronoiu, D. G., Rudi, L., Botez, E. 2017. Influence of different drying methods on the physicochemical properties of red beetroot (Beta vulgaris L. var. Cylindra). Food Chemistry, 236, 59-67.
[2] Chhikara, N. Kushwaha, K. Sharma, P. Gat, Y. Panghal, A. 2019. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food chemistry, 272, 192-200.
[3] Kohajdová, Z., Karovičová, J., Kuchtová, V., Lauková, M. 2018. Utilization of beetroot powder for bakery applications. Chemical Papers, 72(6), 1507-1515.
[4] Marszalek, K., Kryzanowska, J., wozniak, Ł. Ska˛pska, S. 2017. Kinetic modelling of polyphenol oxidase, pectin esterase, polygalacturonase, degradation of the main pigments and polyphenols in beetroot juice during high pressure carbon dioxide treatment. LWT-Food Science and Technology, 85, 412-417.
[5] Deladino, L., Alvarez, I., De Ancos, B., Sánchez-Moreno, C., Molina-García, A. D., Schneider Teixeira, A. 2017. Betalains and phenolic compounds of leaves and stems of Alternanthera brasiliana and Alternanthera tenella. Food Research International, 97, 240-249.
[6] Kumar, S., Brooks, M. S. L. 2018. Use of red beetroot (Beta vulgaris L.) for antimicrobial applications-a critical review. Food and Bioprocess Technology, 11(1), 17-42.
[7] Ju, H. Y., Law, C. L., Fang, X. M., Xiao, H. W., Lue, Y. H., Gao, Z. J. 2016. Drying kinetics and evolution of the sample's corn temperature and moisture distribution of yam slices (Dioscorea alatal.) during convective hot-air drying. Drying Technology, 34(11), 1297-1306.
[8] Onwude, D. I., Hashim, N., & Chen, G. 2016. Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology, 57, 132-145.
[9] Wang, J., Law, C. L., Nema, P. K., Zhao, J. H., Liu, Z. L., Deng, L. Z., Gao, Z. J., Xiao, H. W. 2018. Pulsed vacuum drying enhances drying kinetics and quality of lemon Slices. Journal of Food Engineering, 224, 129-138.
[10] Yang, X. H., Deng, L. Z., Mujumdar, A.S., Xiao, H. W., Zhang, Q., Kan, Z. 2018. Evolution and modeling of color changes of red pepper (Capsicum annuum L.) during hot air drying. Journal of Food Engineering, 231, 101-108.
[11] Zhao, D., An, K., Ding, S., Liu, L., Xu, Z., Wang, Z. 2014. Two-stage intermittent microwave coupled with hot-air drying of carrot slices: Drying physical quality. Food and Bioprocess Technology, 7(8), 2308-2318.
[12] Asokapandian, S., Venkatachalam, S., Swamy, G. J. & Kuppusamy, K. 2016. Optimization of foaming properties and foam mat drying of muskmelon using soy protein. Journal of Food Process Engineering, 39(6), 692-701.
[13] Ng, M. L., Sulaiman, R. 2018. Development of beetroot (Beta vulgaris) powder using foam mat drying. LWT-Food Science and Technology, 88, 80-86.
[14] Abbasi, E., Azizpour, M. 2016. Evaluation of physicochemical properties of foam mat dried sour cherry powder. LWT - Food Science and Technology, 68, 105-110.
[15] Salahi, M. R., Mohebbi, M. & Taghizadeh, M. 2017. Development of cantaloupe (Cucumis melo) pulp powder using foam mat drying method: Effects of drying conditions on microstructural of mat and physico-chemical properties of powder. Drying Technology, 35 (15), 1-12.
[16] Franco, T. S., Perussello, C. A., Ellendersen, L. N., & Masson, M. L. 2017. Effect of process parameters on foam mat drying kinetics of yacon (Smallanthus Sonchifolius) and thin- layer drying modelling of experimental data. Journal of Food Process Engineering, 40(1), 1-10.
[17] Dehghannya, J., Pourahmad, M., Ghanbarzadeh, B., Ghaffari, H. 2018. Influence of foam thickness on production of lime juice powder during foam-mat drying: Experimental and numerical investigation. Powder Technology, 328, 470-484.
[18] Paciulli, M., Medina-Meza, I.G., Chiavaro, E., Barbosa-Cánovas, G.V. 2016. Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.), LWT-Food Science and Technology, 68, 98-104.
[19] Crank, J.1975. The Mathematics of Diffusion; Clarendon Press: Oxford.
[20] Seerangurayar, T., Manickavasagan, A., Al-Ismaili, A. M., Al-Mulla, Y. A. 2017. Effect of carrier agents on flowability and microstructural properties of foam-mat freeze dried date powder. Journal of Food Engineering, 215, 33-43.
[21] Aziz, M. G., Yusof, Y. A., Blanchard, C., Saifullah, M., Farahnaky, A., Scheiling, G. 2018. Material Properties and Tableting of Fruit Powders. Food Engineering Reviews, 10(2), 66-80.
[22] Salahi, M. R., Mohebbi, M., Taghizadeh, M. 2015. Foam mat drying of cantaloupe (Cucumis melo): Optimization of foaming parameters and investigating drying characteristics. Journal of Food Processing and Preservation, 39(6), 1798-1808.
[23] Franco, T. S., Perussello, C. A., Ellendersen, L. N., Masson, M. L. 2016. Effects of foam mat drying on physicochemical and microstructural properties of yacon juice powder. LWT-Food Science and Technology, 66, 503-513.
[24] Shaari, N. A., Sulaiman, R., Rahman, R. A., Bakar, J. 2018. Production of pineapple fruit (Ananas comosus) powder using foam mat drying: Effect of whipping time and egg albumen concentration. Journal of Food Processing and Preservation, 42(2), 1-10.
[25] Tontul, I., Topuz, A. 2017. Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63, 91-102.
[26] Selig, M. J., Celli, G. C., Tan, C., La, E., Mills, E., Webley, D.A., Olga I. Padilla-Zakour, Abbaspourrad, A. 2018. High pressure processing of beet extract complexed with anionic polysaccharides enhances red color thermal stability at low pH. Food Hydrocolloids, 80, 292-297.
[27] Bhandari, B. 2013. Introduction to Food Powders. Hand book of food powders, 1-25.
[28] Kowalski, S.J. and Łechtańska, J.M. 2015. Drying of red beetroot after osmotic pretreatment: Kinetics and quality considerations. Chemical and Process Engineering, 36(3), 345-354.
[29] Szadzińska, J., Mierzwa, D., Pawłowski, A., Musielak, G., Pashminehazar, R. and Kharaghani, A. 2020. Ultrasound-and microwave-assisted intermittent drying of red beetroot. Drying Technology, 38(1-2), 93-107.
[30] Figiel, A. 2010. Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98(4), 461-470.
[31] Singh, B. and Hathan, B.S. 2017. Process optimization of spray drying of beetroot Juice. Journal of food science and technology, 54(8), 2241-2250.