بهینه سازی تولید کلروفیلین مس از چمن و بررسی پایداری آن در نوشیدنی نعناع طی زمان نگه‌داری

نویسندگان
1 استادیار گروه پژوهشی افزودنی های غذایی، پژوهشکده علوم و فناوری مواد غذایی، سازمان جهاد دانشگاهی خراسان رضوی
2 2- عضو گروه پژوهشی افزودنی های غذایی، پژوهشکده علوم و فناوری مواد غذایی، سازمان جهاد دانشگاهی خراسان رضوی
3 عضو گروه پژوهشی افزودنی های غذایی، پژوهشکده علوم و فناوری مواد غذایی، سازمان جهاد دانشگاهی خراسان رضوی
چکیده
کلروفیلین مس، رنگدانه ای محلول در آب است و کاربرد گسترده ای در نوشیدنی ها دارد. هدف از این مطالعه، مقایسه استخراج تک و دو مرحله ای کلروفیل جهت دستیابی به بیشترین بازدهی، بهینه سازی تولید کمپلکس کلروفیل مس و درنهایت، بررسی پایداری کلروفیلین مس در نوشیدنی نعناع در دماهای محیط و تسریع شده طی زمان بود. ابتدا کلروفیل از چمن طی یک و دو مرحله استخراج شد و شرایط بهینه تعیین گردید. برای دستیابی به شرایط بهینه تولید کلروفیل مس، تاثیر مستقل متغیرهای غلظت مس (0-200 % وزنی/وزنی مس نسبت به کلروفیل)، pH (3-9)، دما (40-100 درجه سانتیگراد) و زمان (15-180 دقیقه) بر شاخص سبزی (a*) بهینه سازی شدند. پس از صابونی کردن کلروفیل مس تولیدی در شرایط بهینه، کلروفیلین مس محلول در آب تولید شد. درنهایت، نوشیدنی نعناع حاوی کلروفیلین مس تولید شد و پایداری رنگ آن در هر دو شرایط نور/تاریکی و دماهای محیط و تسریع شده (42 درجه سانتیگراد) طی زمان بررسی شد. نتایج حاکی از آن بود که بیشترین بازده استخراج طی دو مرحله با نسبت حلال به ماده جامد 1:10 (میلی لیتر بر گرم ماده خشک) حاصل شد (590 میلی گرم به ازای 100 گرم ماده خشک). بیشترین شاخص سبزی در غلظت 100% مس، در دمای 80 درجه سانتیگراد و طی زمان 60 دقیقه حاصل شد. نوشیدنی نعناع حاوی کلروفیلین مس تولیدی طی زمان و در هر دو شرایط نور/تاریکی و دماهای محیط و تسریع شده، پایداری خوبی را نشان داد اگرچه در نمونه حاوی رنگدانه تجاری، رسوب رنگ مشاهده شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of copper chlorophyllin production from grass and evaluating its stability in the mint drink during storage

نویسندگان English

hamed saberian 1
Hamed Hosseini 2
Shadi Bolourian 1
Fereshteh Hosseini 3
1 Assistant Professor of Food Science and Technology, Department of Food Additives, Food Science and Technology Research Institute, Mashhad, Iran
2 2- Researcher of Food Science and Technology, Department of Food Additives, Food Science and Technology Research Institute, Mashhad,
3 Researcher of Food Science and Technology, Department of Food Additives, Food Science and Technology Research Institute, Mashhad, Iran
چکیده English

Copper chlorophyllin is a water soluble pigment and has a wide application in the drink industry. The aims of the research were, first to compare single and double step extraction of chlorophyll to achieve the highest yield, second to optimize the producing of copper chlorophyll complex and finally, to study the stability of copper chlorophyllin in mint drink at room and accelerated temperatures during time. First, the chlorophyll was extracted from grass by single and double step extraction and the optimum condition was determined. The effect of Cu concentration (0-200 % w/w), pH (3-9), temperature (40-100 ۫C) and time (15-180 min) on the greenness value (a*) was optimized. After saponification of the produced copper chlorophyll, water soluble copper chlorophyllin was produced. Finally, mint drink containing copper chlorophyllin was produced and its color stability was investigated at light/dark and room and accelerated temperatures (25 and 42 ۫C) during time. The results indicated that the highest yield of chlorophyll (590 mg/100 g d.m.) was obtained by double step extraction with the solvent/solid ratio of 10:1 (ml/g). The highest a* was obtained at cu concentration of 100 % at 80 ۫C during 60 min. Mint drink containing copper chlorophyllin was stable at different conditions of light/darkness and room and accelerated temperatures but in the drink containing commercial copper chlorophyllin, this pigment was precipitated.

کلیدواژه‌ها English

Chlorophyll extraction
grass
Copper chlorophyllin
Drink
[1] Han, J., Wang, Y., Ma, J., Wu, Y., Hu, Y., Ni, L., & Li, Y. (2013). Simultaneous aqueous two-phase extraction and saponification reaction of chlorophyll from silkworm excrement. Separation and Purification Technology, 115, 51-56.
[2] Iranian National Standardization Organization (INSO) 740, Permitted food additives- Food colors- List and general specifications (2012).
[3] Bagheri, S. L., Radi, m., & Amiri, S. (2012). Investigation of chemical structure and stability of chlorophyll as a natural pigment, 21 th national congress of Iranian Food Science and Technology.
[4] Laborde, L., & Von Elbe, J. (1994). Chlorophyll degradation and zinc complex formation with chlorophyll derivatives in heated green vegetables. Journal of Agricultural Food Chemistry, 42, 1100–1103.
[5] Von Elbe, J., & Schwartz, S. (1996). Colorants (Cilt 2). New York: Marcel Dekker: Food Chemistry.
[6] Koca, N., Karadeniz, F., & Burdurlu, H. (2007). Effects of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chemistry, 100, 609–615.
[7] Iranian National Standardization Organization (INSO) 14406, Food Additives- Permitted food colorants- Cu-chlorophyllin complexes (Na and K salts) – Experimental methods (2011)
[8] Tumolo, T., & Lanfer-Marquez, U. M. (2012). Copper chlorophyllin: A food colorant with bioactive properties? Food Research International, 46(2), 451-459.
[9] FDA (2002). Listing of color additives exempt fromcertification: Sodiumcopper chlorophyllin. US Food and Drug Administration, Department of Health and Human Services Federal Register 67FR49567/67FR35429.
[10] Miazek, K., & Ledakowicz, S. (2013). Chlorophyll extraction from leaves, needles and microalgae: A kinetic approach. International Journal of Agricultural and Biological Engineering, 6(2), 107-115.
[11] Saberian, H., Hosseini, F., Bolourian, Sh. (2017a). Optimization of extraction condition of chlorophyll from Alfalfa and investigating its quality and quantity properties in comparison to different plant resources, Iranian Journal of Food Science and Technology, 14 (71), 47-57.
[12] Saberian, H., Hosseini, F., Bolourian, Sh. (2017b). The effect of ultrasound method on the extraction of chlorophyll from mulberry leaves, Innovative Food Technology, 4(16), 67-76.
[13] Zvezdanović, J. B., Marković, D. Z., & Milenković, S. M. (2012). Zinc (II) and copper (II) complexes with pheophytin and mesoporphyrin and their stability to UV-B irradiation: Vis spectroscopy studies. Journal of the Serbian Chemical Society, 77(2), 187-199.
[14] Ismail, SI, Hussein, A. A., Hussiney, H. A., & Hammouda, F. M. (1994). Application Of Different Methods For The Preparation Of Chlorophyll Pigments For Food And Pharmaceutical Industries. Qatar University Science Journal, 14, 161-164.
[15] Arnon, D. (1949). Copper enzymes in isolated chloroplasts, Plant physiology; 24: 1-16.
[16] Özkan, G., & Bilek, S. E. (2015). Enzyme-assisted extraction of stabilized chlorophyll from spinach. Food chemistry; 176:152-157.
[17] Albuquerque, I. M. D., Cardoso, D. M., Masiero, P. R., Paiva, D. N., Resqueti, V. R., Fregonezi, G. A. D. F., & Menna-Barreto, S. S. (2016). Effects of positive expiratory pressure on pulmonary clearance of aerosolized technetium-99m-labeled diethylenetriaminepentaacetic acid in healthy individuals. Jornal Brasileiro de Pneumologia, 42(6), 404-408.
[18] López, C. J., Caleja, C., Prieto, M. A., Barreiro, M. F., Barros, L., & Ferreira, I. C. (2018). Optimization and comparison of heat and ultrasound assisted extraction techniques to obtain anthocyanin compounds from Arbutus unedo L. Fruits. Food chemistry, 264, 81-91.
[19] Oberoi, D. P. S., & Sogi, D. S. (2017). Utilization of watermelon pulp for lycopene extraction by response surface methodology. Food chemistry, 232, 316-321.
[20] Pinela, J., Prieto, M. A., Barreiro, M. F., Carvalho, A. M., Oliveira, M. B. P., Curran, T. P., & Ferreira, I. C. (2017). Valorisation of tomato wastes for development of nutrient-rich antioxidant ingredients: A sustainable approach towards the needs of the today's society. Innovative Food Science & Emerging Technologies, 41, 160-171.
[21] Agarwal, P. C., & Pruthi, J. S. (1968). A study of factors governing the recovery and quality of pectin from fresh mandarin orange waste (peel and pomace). Indian Food Packer; 22(3): 5–9.
[22] Kulkarni, S., & Nikolov, Z. (2018). Process for selective extraction of pigments and functional proteins from Chlorella vulgaris. Algal research, 35, 185-193.
[23] Yolmeh, M., Najafi, M. B. H., & Farhoosh, R. (2014). Optimisation of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM). Food Chemistry, 155, 319-324.
[24] Amra Perva-Uzunalić; Mojca Škerget; Željko Knez; Bernd Weinreich; Frank Otto; Sabine Grüner (2006). Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chemistry, 69, 597-605.
[25] Zhao, W., Duan, M., Zhang, X., & Tan, T. (2018). A mild extraction and separation procedure of polysaccharide, lipid, chlorophyll and protein from Chlorella spp. Renewable Energy, 118, 701-708.
[26] Laborde, L., & Von Elbe, J. (1990). Zinc complex formation in heated vegetable purees. Journal of Agricultural Food Chemistry, 42(5), 484–487.
[27] Senklang, P., & Anprung, P. (2009). Optimizing enzymatic extraction of Zn– chlorophyll derivatives from pandan leaf using response surface methodology. Journal of Food Processing and Preservation, 34, 759–776.
[28] Park, M. H., Sangwanangkul, P., & Baek, D. R. (2018). Changes in carotenoid and chlorophyll content of black tomatoes (Lycopersicone sculentum L.) during storage at various temperatures. Saudi journal of biological sciences, 25(1), 57-65.
[29] Kang, Y. R., Lee, Y. K., Kim, Y. J., & Chang, Y. H. (2019). Characterization and storage stability of chlorophylls microencapsulated in different combination of gum Arabic and maltodextrin. Food chemistry, 272, 337-346.
[30] Nikkonen, T. (2015). Structure-property relationships and self-assembly of chlorophyll derivatives in development of light-harvesting structures and materials.