بررسی ساختار و فعالیت آنتی‌اکسیدانی کربوهیدرات خالص‌شده از ریشه گیاه Amygdalus elaeagnifolia Spach

نوع مقاله : پژوهشی اصیل

نویسندگان
1 گروه شیمی، دانشکده علوم پایه، دانشگاه گلستان، گرگان، ایران.
2 گروه فیتوشیمی، پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهید بهشتی، تهران، ایران.
10.48311/fsct.2025.83981.0
چکیده
کربوهیدرات‌ها به دلیل کاربرد در صنایع غذایی، دارویی و آرایشی دارای اهمیت هستند. ارتباط مستقیمی بین فیتوشیمی کربوهیدرات‌ها و چگونگی عملکرد و کاربرد آن‌ها در این صنایع وجود دارد. در ایران، تحقیقات کافی در زمینه بررسی کربوهیدرات‌های موجود در گونه‌های بومی و اندمیکِ کشور انجام نشده است. بدین منظور هدف از این پژوهش بررسی ساختار و خواص آنتی اکسیدانی کربوهیدرات گونه بومی Amygdalus elaeagnifolia Spach  می­باشد. ریشه این گیاه از استان فارس جمع آوری شد. در ابتدا ریشه‌ها تمیز و پیش استخراج با حلال اتانول صورت گرفت. استخراج اصلی با استفاده از آب داغ انجام گردید. جهت ‌خالص‌سازی کربوهیدرات‌ها، مراحل مختلفی از جمله رسوب‌دهی کربوهیدرات با اتانول، حذف پروتئین‌ها با روش سواگ، به کارگیری جاذب تبادل یونی DEAE-Cellulose و در نهایت سفادکس G-100 استفاده شد. کربوهیدرات خالص شده AEC-1 نامگذاری گردید. گروه‌های عاملی موجود در AEC-1  با استفاده از ‌طیف‌سنج فروسرخ (FT-IR) مطالعه شدند. مطالعات کمی و شناسایی نوع مونومرها به ترتیب با استفاده از کروماتوگرافی گازی متصل به آشکارساز یونیزاسیون شعله (GC-FID) و طیف‌سنج جرمی (GC-MS) انجام شد. همچنین فعالیت آنتی اکسیدانی AEC-1  با استفاده از سه نوع رادیکال‌ آزاد، 2،2-دی‌فنیل-1-پیکریل هیدرازین (DPPH)، 2،2′-آزینو-بیس (3-اتیل بنزوتیازولین-6-اسیدسولفونیک) (ABTS) و رادیکال هیدروکسیل سنجیده شد. درصد خلوص AEC-1 67/0 ± 08/94 بدست آمد. بررسی گروه‌های عاملی با استفاده از FT-IR نمایانگر آن است که این کربوهیدرات دارای گروه­های اسیدی، کربن­های آنومری آلفا و مونوساکاریدهای پیرانوزی می‌باشد. بررسی کروماتوگرام‌های GC-FID و GC-MS نشان داد که AEC-1 دارای مونوساکاریدهای آرابینوز، گالاکتوز، مانوز، گلوکز، فروکتوز و گلوکرونیک اسید به ترتیب با درصدهای  52/31%، 10/26%، 00/19%، 17/16%، 63/4% و 56/2% است. بررسی‌های حاصل از عملکرد آنتی اکسیدانی این کربوهیدرات در مقابل رادیکال‌های DPPH، ABTS و OH نشان می‌دهد که با افزایش میزان غلظت AEC-1 فعالیت مهار کنندگی این کربوهیدرات افزایش می‌یابد. بر اساس نتایج، کربوهیدرات خالص شده یک هتروپلی‌ساکارید اسیدی با فعالیت آنتی اکسیدانی نسبتا قابل 
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Structural Investigation and Antioxidant Activity of Purified Carbohydrate from the Roots of Amygdalus elaeagnifolia Spach

نویسندگان English

Elham Ahmadi Juybari 1
Mahdi Moridi farimani 2
1 Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
2 Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
چکیده English

Carbohydrates play a crucial role in the food, pharmaceutical, and cosmetic industries, with their applications being closely linked to their specific phytochemical composition. However, a significant knowledge gap exists regarding the phytochemistry of carbohydrates derived from Iran's native and endemic plant species.

This study investigates the phytochemical profile and antioxidant activities of purified carbohydrate extracted from the roots of the native Iranian plant, Amygdalus elaeagnifolia. were collected from the village of Barshneh, Fars Province, Iran. The roots were first thoroughly cleaned and then subjected to pre-extraction with 96% ethanol. The main carbohydrate extraction was performed using hot water. The extract was subjected to a series of purification steps, including precipitation with 96% ethanol, protein removal using Sevag method, ion-exchange chromatography with DEAE cellulose as the stationary phase, and gel filtration chromatography using Sephadex G-100. Following these steps the purified carbohydrate, designated as AEC-1, was successfully obtained. The functional group of AEC-1 were analyzed using Fourier-transform infrared (FTIR) spectroscopy. The monosaccharide composition was determined using gas chromatography-flame ionization detection (GC-FID), while monomer identification was conducted using gas chromatography-mass spectrometry (GC-MS). Finally, the antioxidant capacity of AEC-1 was evaluated against three free radicals: 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and hydroxyl radical. The purity of AEC-1 was determined to be 94.08 + 0.67%. FT-IR analysis demonstrated functional groups such as an acid group, α-anomeric carbons and the pyranose ring structures. Chromatographic studies demonstrated the following monosaccharide profile: arabinose (31.52%), galactose (26.10%), mannose (19.00%), glucose (16.17%), fructose (4.63%), and glucuronic acid (2.56%). Antioxidant assays demonstrated significant, concentration-dependent inhibitory effect of AEC-1 on DPPH, ABTS, and hydroxyl radicals. The results indicate that the purified carbohydrate from A. elaeagnifolia species is an acidic heteropolysaccharide with moderate antioxidant activity against DPPH, ABTS, and hydroxyl radicals.

 

کلیدواژه‌ها English

Almond
Biological properties
Extraction
Purification
Identification
 
 
[1]                Lu, X., Jing, Y., Zhang, N., Chen, L., Tai, J. and Cao, Y., 2025. Structural characterization and anti-obesity effect of a novel water-soluble galactomannan isolated from Eurotium cristatum. Carbohydrate Polymers, 348(Part B): 122870.
[2]                [2]        Yu, Q., Li, W., Liang, M., Li, G., Wu, Z., Long, J., Yuan, C., Mei, W. and Xia, X., 2024. Preparation, Characterization, and Antioxidant Activities of Extracts from Amygdalus persica L. Flowers. Molecules, 29(3): 633.
[3]                 [3]       Ji, C., Ma, Y., Xie, Y., Guo, J., Ba, H., Zhou, Z., Zhao, K., Yang, M., He, X. and Zheng, W., 2024. Isolation and purification of carbohydrate components in functional food: a review. RSC Advances, 14(32): 23204–23214.
[4]                 [4]       Wang, X., Lu, Y., Li, M., Xia, X., Jin, C., Ding, K. and Chen, D., 2024. Structural characterization and Bacteroides proliferation promotion activity of a novel homogeneous arabinoglucuronoxylan from Commelina communis L. Bioorganic Chemistry, 153: 107790.
[5]                 [5]       Hao, J., Zhu, Y., Zhang, Y., Li, L., Li, Z., Wang, L., Qu, Y., Qi, L., Yu, H. and Wang, D., 2025. Structural characterization and hypolipidemic activity of a hetero-galactan purified from Sanghuangporus vaninii based on modulation of TLR4/NF-κB pathway. Carbohydrate Polymers, 347(1): 122702.
[6]                 [6]       Cao, L., Liu, W., Jing, H., Yasen, A., Wang, J., Wang, Y., Yang, Z., Yili, A., Nuerxiati, R. and Weng, Z., 2024. Ultrasound-assisted low-temperature extraction of polysaccharides from Lavandula angustifolia Mill.: optimization, structure characterization, and anti-inflammatory activity. International Journal of Biological Macromolecules, 282(2): 136764.
[7]                 [7]       Saberi, F., Kiani, B., Omidvar, E., Azimzadeh, H. and Esmaeilpour, M., 2023. Evaluating the plantation success by mountain almond (Amygdalus scoparia Spach.) and its effect on vegetation and soil in Arjan habitats of Jamal Beyg region, Fars province. Water and Soil Management and Modeling, 3(4): 227–241.
[8]                 [8]       Kianbakht, S., Nabati, F. and Hashem Dabaghian, F., 2023. Effects of topical Persian medicine Amygdalus communis L. var. Amara kernel oil on the symptoms of knee osteoarthritis: a randomized, triple-blind, active, and placebo-controlled clinical trial. Journal of Medicinal Plants, 22(87): 89–96.
[9]                 [9]       Sharifpoor, R., Jafari, A. and Jhanbazi Gojani, H. 2016. Effects of aspect on age dependent quality and quantity of mountain almond (Amygdalus arabica Olivier) oil (case study: Karebas, Cheharmahal-va-Bakhtiary). Iranian Journal of Medicinal and Aromatic Plants, 32(4): 688–697.
[10]              [10]     Shalayel, M. H. F., Al-Mazaideh, G. M., Alanezi, A. A., Almuqati, A. F. and Alotaibi, M., 2023. The Potential Anti-Cancerous Activity of Prunus amygdalus var. amara Extract. Processes, 11(4): 1277.
[11]              [11]     Bouaziz, F., Koubaa, M., Helbert, C. B., Kallel, F., Driss, D., Kacem, I., Ghorbel, R. and Chaabouni, S. E., 2015. Purification, structural data and biological properties of polysaccharide from Prunus amygdalus gum. International Journal of Food Science & Technology, 50(3): 578–584.
[12]              [12]     Seyfi, R., Kasaai, M. R. and Chaichi, M. J., 2019. Isolation and structural characterization of a polysaccharide derived from a local gum: Zedo (Amygdalus scoparia Spach). Food Hydrocolloids, 87: 915–924.
[13]              [13]     Dammak, M. I., Chakroun, I., Mzoughi, Z., Amamou, S., Mansour, H. Ben, Le Cerf, D. and Majdoub, H., 2018. Characterization of polysaccharides from Prunus amygdalus peels: Antioxidant and antiproliferative activities. International Journal of Biological Macromolecules, 119: 198–206.
[14]              [14]     Hassanpouraghdam, M. B., Ghorbani, H., Esmaeilpour, M., Alford, M. H., Strzemski, M. and Dresler, S., 2022. Diversity and Distribution Patterns of Endemic Medicinal and Aromatic Plants of Iran: Implications for Conservation and Habitat Management. International Journal of Environmental Research and Public Health, 19(3): 1552.
[15]              [15] Iranmanesh, Y. and Jahanbazi Goujani, H., 2017. Comparison of fatty acid composition of fruit oil from acorn (Persian oak), Pistacia atlantica Desf. and four wild almond species. Iranian Journal of Medicinal and Aromatic Plants, 33(2):325–337.
[16]              [16]     Cai, L., Zou, S., Liang, D. and Luan, L., 2018. Structural characterization, antioxidant and hepatoprotective activities of polysaccharides from Sophorae tonkinensis Radix. Carbohydrate Polymers, 184(15): 354–365.
[17]             [17]     Zheng, X., Liu, Z., Li, S., Wang, L., Lv, J., Li, J., Ma, X., Fan, L. and Qian, F., 2016. Identification and characterization of a cytotoxic polysaccharide from the flower of Abelmoschus manihot. International Journal of Biological Macromolecules, 82: 284–290
[18]             [18]      Ahmadi, E., Rezadoost, H., Alilou, M., Stuppner, H. and Moridi Farimani, M., 2022. Purification, structural characterization and antioxidant activity of a new arabinogalactan from Dorema ammoniacum gum. International Journal of Biological Macromolecules, 194: 1019–1028.
[19]             [19]      Miller, G. L., 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3): 426–428.
[20]             [20] Blois, M. S., 1958. Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181(4617): 1199–1200.
[21]              [21]     Asghari, B., Mafakheri, S. and Zarabi, M., 2019. Study of Antioxidant and Antimicrobial Activity of Date Seed Extract and itsEffects on Physicochemical, Microbial and Sensory Properties of Cupcake. Journal of food science and technology(Iran), 16(88): 327–342.
[22]             [22]      Ghorbani, Sh., Jafarian, S., Sharifi Soltani, M. and Roozbeh nasiraie, L., 2025. Evaluation of Some Physicochemical and Sensory Properties of Beef Sausage Containing Sour Tea (Hibiscus Sabdariffa L .) Extract. Journal of food science and technology(Iran), 22(58): 63-79.
[23]             [23] Yang, C., Hu, C., Zhang, H., Chen, W., Deng, Q., Tang, H. and Huang, F., 2020. Optimation for preparation of oligosaccharides from flaxseed gum and evaluation of antioxidant and antitumor activities in vitro. International Journal of Biological Macromolecules, 153:1107–1116.
[24]             [24]      Jing, C., Yuan, Y., Tang, Q., Zou, P., Li, Y. and  Zhang, C., 2017. Extraction optimization, preliminary characterization and antioxidant activities of polysaccharides from Glycine soja. International Journal of Biological Macromolecules, 103: 1207–1216.
[25]             [25]      Salmanian, Sh., Sadeghi Mahoonak, A.R. and Jamson, M., 2018. Determination of amounts, antioxidant properties and identification of main phenolic compound in Enarijeh (Froriepiasubpinnata) extract by RP-HPLC method. Journal of food science and technology(Iran), 15(81): 287-297.
[26]             [26]      Liu, Q., Ge, X., Chen, L., Cheng, D., Yun, Z., Xu, W. and Shao, R., 2018. Purification and analysis of the composition and antioxidant activity of polysaccharides from Helicteres angustifolia L. International Journal of Biological Macromolecules, 107(Part B): 2262–2268.
[27]             [27]      Jahanbin, K., 2018. Structural characterization of a new water-soluble polysaccharide isolated from Acanthophyllum acerosum roots and its antioxidant activity. International Journal of Biological Macromolecules, 107(Part A): 1227–1234.
[28]             [28]      Mathlouthi, M. and Koenig, J. L., 1987. Vibrational Spectra of Carbohydrates. Advances in Carbohydrate Chemistry and Biochemistry, 44: 7-89
[29]             [29]      Hou, Y., Ding, X. and Hou, W., 2015. Composition and antioxidant activity of water-soluble oligosaccharides from Hericium erinaceus. Molecular Medicine Reports, 11(5): 3794–3799.
[30]             [30]      Fan, H., Meng, Q., Xiao, T. and Zhang, L., 2018. Partial characterization and antioxidant activities of polysaccharides sequentially extracted from Dendrobium officinale. Journal of Food Measurement and Characterization, 12(2): 1054–1064.
[31]             [31]      Zeng, C., Chen, X., Jiang, W., Liu, L. and Fanga, C., 2020. Isolation, Purification and Antioxidant Activity of The Polysaccharides from Chinese Truffle Tuber sinense. Iranian Journal of Pharmaceutical Research, 19(1): 436–447.
[32]             [32]      Lo, T. C.-T., Chang, C. A., Chiu, K.-H., Tsay, P.-K. and Jen, J.-F., 2011. Correlation evaluation of antioxidant properties on the monosaccharide components and glycosyl linkages of polysaccharide with different measuring methods. Carbohydrate Polymers, 86(1): 320–327.
[33]             [33]      Wang, Y., Mao, F. and Wei, X., 2012. Characterization and antioxidant activities of polysaccharides from leaves, flowers and seeds of green tea. Carbohydrate Polymers, 88(1): 146–153.