استخراج ژلاتین به کمک آبکافت آنزیمی از پوست ماهی هوور (Thunnus tonggol )

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشکده صنایع غذایی دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 دانشگاه آزاد اسلامی واحد بندرعباس
10.48311/fsct.2025.83910.0
چکیده
ژلاتین یک ترکیب پروتئینی قابل‌حل در آب است که توسط هیدرولیز جزئی از کلاژن به دست می‌آید و کاربردهای بسیاری در صنایع غذایی و علوم تغذیه دارد. بنابراین پژوهش حال حاضر در رابطه با استخراج ژلاتین از منابع ارزان و در دسترس انجام شد. در این مطالعه تأثیر سه فاکتور دما در سه سطح 30، 40 و 50 درجه سانتی گراد، آنزیم در سه سطح 01/0%، 055/0% و 1/0% وزنی-وزنی و pH در سه سطح 2، 3 و 4 بر روی استخراج ژلاتین از پوست ماهی هوور بررسی گردید. در این راستا استحکام ژل، بازده و رنگ پودر ژلاتین‌های استخراج‌شده اندازه‌گیری شد. نتایج نشان داد به جز دما، با افزایش pH و درصد آنزیم، استحکام ژل افزایش یافت (۰۵/۰>P) اما دما اثر معنی‌داری بر آن نداشت (۰۵/۰P) اما میزان شاخص رنگ زرد (b*) در استخراج به روش شیمیایی نسبت به روش آنزیمی افزایش یافت (۰۵/۰>P).  بیشترین روشنایی در ژلاتینی که با شرایط دمایی 40 درجه سانتی‌گراد، درصد آنزیم 055/0 وزنی-وزنی و 3= pH مشاهده شد. بر اساس نتایج بیشترین بازده ژلاتین تولیدشده در فرآیند آنزیمی با میزان 65/21% مربوط به تیمار با دمای50 درجه سانتی‌گراد و نسبت آنزیم 01/0% و 2=pH بود درحالی‌که این عدد در فرآیند شیمیایی 10% به دست آمد. نتیجه اینکه استفاده از دمای 30 درجه سانتی‌گراد و درصد آنزیم 1/0 وزنی-وزنی و 4=pH منجر به بازدهی بیشتر ولی استفاده از دمای50 درجه سانتی‌گراد و نسبت آنزیم 01/0% و 2=pH منجر به تولید ژلاتین با استحکام ژل بیشتر می‌شود.



 
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Enzymatic assisted extraction of gelatin from Thunnus tonggol skin

نویسندگان English

parisa feizi 1
Alireza Salarzadeh 2
1 Dept. of Food Science & Technology, college of Food Technology, Gorgan University of Agricultural Sciences & Natural Resources
2 Dept. of Fisheriese , Bandar Abbas Branch, Islamic Azad University.
چکیده English

 Gelatin is a water soluble component and is achievable as a result of partial hydrolysis of collagen and it has many applications in food industry and nutrition science. Therefore, the current research was conducted in relation to gelatin extraction from inexpensive  and available sources.  The aim of this study was to evaluate the effects of temperature at three levels of 30, 40 and 50 ºC, enzyme at 0.055%, 0.01% and 0.1% (w/w) levels and pH at 2, 3 and 4 levels on the quality of extracted gelatin from Thunnus tonggol skin. Accordingly, the firmness, yield and color of resultant gelatin were determined.  Based on the results, despite form temperature, by increasing of pH and enzyme percentage, the firmness of gelatin was increased (p<0.05). The highest firmness was recorded at 30 ºC, 0.1% enzyme at pH=4. The color data revealed that lightness (L*), redness (a*) and whiteness of enzymatic extracted gelatin powder was higher that the chemical extracted one (p<0.05). The highest lightness was observed at 40 C, 0.055% enzyme at pH=3.  According to the results, the highest gelatin yield as 21.65% was related to the enzymatic assisted method at 50 ºC, 0.01% enzyme at pH=2, whereas it was obtained as 10% at the chemical extraction method.  In conclusion, by application of 30 C and 0.1% enzyme at pH=4 the highest gelatin yield is achievable, while using 50 C and 0.01% enzyme at pH=2 could results the gelatin with the highest firmness. 

 

کلیدواژه‌ها English

Enzymatic extraction
Gelatin
Yield
Color
Gel strength
[1].  BAILEY, A. J., PAUL, R. G., & KNOTT, L 1998. Mechanisms of maturation and ageing of collagen. Mechanisms of ageing and development, 108, 439-445.
 [2]. RAHMAN, M. S., AL-SAIDI, G. S., & GUIZANI, N. 2008. Thermal characterisation of gelatin extracted from yellowfin tuna skin and commercial mammalian gelatin. Food Chemistry, 108, 472-481.
 [3]. YANG, H., WANG, Y., JIANG, M., OH, J. H., HERRING, J., & ZHOU, P. 2007. 2‐Step Optimization of the extraction and subsequent physical properties of channel catfish (ictalurus punctatus) skin gelatin. Food Science, 72.
 [4]. GILSENAN, P. M., AND ROSS-MURPHY, S.B 2000b. Rheological characterization of gelatins from mammalian and marine sources. J.Food Hydrocolloids, 12, 191- 195.
 [5].  KOŁODZIEJSKA, I., KACZOROWSKI, K., PIOTROWSKA, B., & SADOWSKA, M. 2004. Modification of the properties of gelatin from skins of Baltic cod (Gadus morhua) with transglutaminase. Food Chemistry, 86, 203-209.
 [6].  A., A. Q. M. 2011. Application of fish gelatin as one of the most important sources of halal gelatin in the world. .  first national food security seminar. [in Persian] 
 [7].  ASHER, D. M. 1999. The transmissible spongiform encephalopathy agents: concerns and responses of United States regulatory agencies in maintaining the safety of biologics. Developments in biological standardization, 100, 103-118.
 [8]. WILESMITH, J. W., RYAN, J. B., & ATKINSON, M. J. 1991. Bovine spongiform encephalopathy: epidemiological studies on the origin. The veterinary record, 128, 199-203.
 [9].  KARIM, A. A., & BHAT, R 2009. Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food hydrocolloids, 23, 563-576.
 [10]. TONG, Y., & YING, T. 2013. Gelling strength improvement and characterization of a gelatin from scales of bighead carp (Aristichthys nobilis). Journal of Food, Agriculture & Environment, 11, 146-150.
 [11]. ZHAO, L., BUDGE, S. M., GHALY, A. E., BROOKS, M. S., & DAVE, D. 2011. Extraction, purification and characterization of fish pepsin: a critical review. J Food Process Technol, 2, 6-2.
 
 [12].  NALINANON, S., BENJAKUL, S., VISESSANGUAN, W., & KISHIMURA, H. 2007. Use of pepsin for collagen extraction from the skin of bigeye snapper (Priacanthus tayenus). Food Chemistry, 104, 593-601.
 [13]. ZHANG, Y., LIU, W., LI, G., SHI, B., MIAO, Y., & WU, X. 2007. Isolation and partial characterization of pepsin-soluble collagen from the skin of grass carp (Ctenopharyngodon idella). . Food chemistry, 103, 912-906.
 [14].   Jongjareonrak, A., Benjakul, S., Visessanguan, W., Nagai, T., & Tanaka, M. (2005). Isolation and characterisation of acid and pepsin-solubilised collagens from the skin of Brownstripe red snapper (Lutjanus vitta). Food chemistry93(3), 475-484.
 [15].  Nalinanon, S., Benjakul, S., Visessanguan, W., & Kishimura, H. (2008). Improvement of gelatin extraction from bigeye snapper skin using pepsin-aided process in combination with protease inhibitor. Food hydrocolloids22(4), 615-622.
 [16]. JONGJAREONRAK, A., BENJAKUL, S., VISESSANGUAN, W., NAGAI, T., & TANAKA, M. 2005. Isolation and characterisation of acid and pepsin-solubilised collagens from the skin of Brownstripe red snapper (Lutjanus vitta). Food Chemistry, 93, 475-484.
 [17]. SOGAWA, K., FUJII-KURIYAMA, Y., MIZUKAMI, Y., ICHIHARA, Y., & TAKAHASHI, K. 1983. Primary structure of human pepsinogen gene. Biological Chemistry, 258, 5306-5311.
 [18].  KAGEYAMA, T., & TAKAHASHI, K 1976. Pepsinogens and pepsins from gastric mucosa of japanese monkey Purification and characterization. The Journal of Biochemistry, 79, 455-468.
[19]. NIELSEN, P. K., & FOLTMANN, B. 1995. Purification and characterization of porcine pepsinogen B and pepsin B. Archives of biochemistry and biophysics, 322, 417-422.
 
 [20]. MARTIN P. TRIEU-CUOT P., C. J., RIBADEAU DUMAS B 1982. Purification and characterization of bovine gastricsin. European Journal of Biochemistry, 122, 31-39.
 
 [21]. SUZUKI, M., NARITA, Y., ODA, S. I., MORIYAMA, A., TAKENAKA, O., & KAGEYAMA, T. 1999. Purification and characterization of goat pepsinogens and pepsins. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 122, 453-460.
 [22]. MUTO, N., & TANI, S. 1979. Purification and characterization of rat pepsinogens whose contents increase with developmental progress. The Journal of Biochemistry, 85, 1143-1149.
 [23].  KAGEYAMA, T., TANABE, K., & KOIWAI, O. 1990. Structure and development of rabbit pepsinogens. Stage-specific zymogens, nucleotide sequences of cDNAs, molecular evolution, and gene expression during development. Journal of Biological Chemistry, 265, 17031-17038.
 [24].  FENG, W., ZHAO, T., ZHOU, Y., LI, F., ZOU, Y., BAI, S., ... & WU, X. 2013. Optimization of enzyme-assisted extraction and characterization of collagen from Chinese sturgeon (Acipenser sturio Linnaeus) skin. Pharmacognosy magazine, 9, S32.
 [25].  MOHTAR, N. F., PERERA, C. O., QUEK, S. Y., & HEMAR, Y. 2013. Optimization of gelatine gel preparation from New Zealand hoki (Macruronus novaezelandiae) skins and the effect of transglutaminase enzyme on the gel properties. Food hydrocolloids, 31, 204-209.
 [26]. El Mohtar, C. S., Bobet, A., Santagata, M. C., Drnevich, V. P., & Johnston, C. T. (2013). Liquefaction mitigation using bentonite suspensions. Journal of geotechnical and geoenvironmental engineering139(8), 1369-1380.
 [27]. Alfaro, E. C., Umaña-Taylor, A. J., Gonzales-Backen, M. A., Bámaca, M. Y., & Zeiders, K. H. (2009). Latino adolescents' academic success: The role of discrimination, academic motivation, and gender. Journal of adolescence32(4), 941-962.
 [28].  CHANARAT, S., & BENJAKUL, S. 2012. Comparative study on protein cross‐linking and gel enhancing effect of microbial transglutaminase on surimi from different fish. Journal of the Science of Food and Agriculture, 92, 844-852.
 [29].  GILSENAN, P. M., & ROSS-MURPHY, S. B 2000a. Rheological characterisation of gelatins from mammalian and marine sources. Food Hydrocolloids, 14, 191-195.
 [30].  CHO, S. M., KWAK, K.S., PARK, D.C., GU, Y.S., JI, C. I., JANG, D. H., LEE, Y. B., AND KIM, S. B. 2004. Processing optimization and functional properties of gelatin from shark (Isurus oxyrinchus) cartilage. J.Food Hydrocolloids, 18, 573-579.
 
 [31].  HAIYING LIU., D. L., AND SHIDONG GUO, 2008. Rheological properties of channel catfish (Ictalurus punctaus) gelatin from fish skins preserved by different methods. J. Science Direct, 41, 1425-1430.
 
 [32].  CHEOW, C. S., NORIZAH, M.S., KYAW, Z.Y., AND HOWELL, N.K. 2007. Preparation and characterisation of gelatins from the skins of sin croaker (johnius dussumieri) and shortifin scad (Decapterus macrosoma). J.Food chemistry, 101, 386-391.
 [33].  JOHNSTON-BANKS, F. A. 1990. Food gels, London, Elsevier Applied Science Publ.
 [34].   D., H. 1996. Gelatin production. US patent, 5, 484,888.
 [35]. SIRIPORN DAMRONGSAKKUL , K. R. & KITTINAN KOMOLPIS , W. T. 2008. Enzymatic hydrolysis of rawhide using papain and neutrase. Journal of Industrial and Engineering Chemistry, 14, 202–206.
 [36]. VEIS, A. 1964. The macromolecular chemistry of gelatin, New York, Academic Press.
 [37].  KNOTT, L., & BAILLEY, A. J. 1998. Collagen cross-links in mineralizing tissues: A
review of their chemistry, function, and clinical relevance. Review Article, 22.
 [38]. JAMILAH, B. H., KG 2002. Properties of gelatins from skins of fish: black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chemistry, 77, 81-84.
 [39]. KANOKWAN MATMAROH , S. B., THUMMANOON PRODPRAN , ANGEL B. ENCARNACION , & KISHIMURA, H. 2011. Characteristics of acid soluble collagen and pepsin soluble collagen from scale of spotted golden goatfish (Parupeneus heptacanthus). Food Chemistry, 129, 1179–1186.
 [40]. REGENSTEIN, J. M., & ZHOU, P. 2007. Collagen and gelatin from marine by-product, Maximising the value of marine by-products.
 [41]. OCKERMAN, H. W., & HANSEN, C. L. 1988. Glue and gelatin animal by-product processing, New York, Ellis Horwood.
 [42]. Lassoued, I., Jridi, M., Nasri, R., Dammak, A., Hajji, M., Nasri, M., & Barkia, A. (2014). Characteristics and functional properties of gelatin from thornback ray skin obtained by pepsin-aided process in comparison with commercial halal bovine gelatin. Food hydrocolloids41, 309-318.