بررسی تاثیر پیش‌تیمار اولتراسونیک و آبگیری اسمزی بر خصوصیات آنتی‌اکسیدانی و ضد‌میکروبی میوه سیب زرد

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانش آموخته کارشناسی ارشد گروه علوم و مهندسی صنایع غذایی، واحد فسا، دانشگاه آزاد اسلامی، فسا، ایران
2 استادیار گروه علوم و مهندسی صنایع غذایی، واحد فسا، دانشگاه آزاد اسلامی، فسا، ایران
10.48311/fsct.2025.27738
چکیده
آب­گیری اسمزی، فرآیند خارج ­سازی آب بر اساس قرار گرفتن مواد غذایی در محلول هیپرتونیک است. مطالعه حاضر به منظور بررسی اثر آبگیری اسمزی به کمک اولتراسوند بر کاهش پاتوژن­های غذایی (Escherichia coli، Enterococcus faecalis، Salmonella Typhi و Shigella sonnei) روی برش­های سیب انجام شد. علاوه بر این، اثر آبگیری اسمزی به کمک اولتراسوند بر میزان رطوبت، مقدار کل فنول­های محلول و فعالیت مهار رادیکال DPPH در سیب­های تیمار شده اندازه­گیری شد. برش‌های سیب زرد با هر پاتوژن جداگانه تلقیح شدند و به مدت 20 دقیقه تحت امواج اولتراسونیک در دو سطح دامنه (40 و 70 درصد) قرار گرفتند. سپس فرآیند آبگیری اسمزی با غوطه ­ور کردن نمونه­ها در محلول ساکارز 70 درصد برای دوره تماس 4، 8 و 12 ساعت انجام شد. نتایج نشان داد که پیش-تیمار اولتراسوند به تنهایی تعداد پاتوژن­های مورد مطالعه را کاهش داد و سطوح کاهش چهار باکتری بیماری­زا با افزایش دامنه اولتراسوند افزایش یافت. علاوه بر این، نتایج نشان داد که میزان کاهش تعداد پاتوژن­ها به مدت زمان فرآیند آب‌گیری اسمزی و دامنه تیمار اولتراسوند بستگی دارد. بیشترین کاهش در تعداد پاتوژن­ها در دامنه 70 درصد و پس از نگهداری 12 ساعته در محلول اسمزی مشاهده شد که در آن میانگین تعداد E. coli، E. faecalis، S. Typhi  وS. sonnei  به ترتیب به 1/0، 0/4، 7/3 و 1/0 log CFU/g کاهش یافت. علاوه بر این، تیمار آبگیری اسمزی به طور معنی­ داری (05/0>P) میزان رطوبت، فنول کل و فعالیت ضد رادیکال DPPH نمونه ­ها را کاهش داد و این کاهش در نمونه ­های اولتراسوند شده نسبت به نمونه شاهد بیشتر بود. هم­چنین، افزایش دامنه اولتراسوند منجر به کاهش بیشتر پارامترهای مذکور شد. بنابراین، این فرآیند ترکیبی غیرحرارتی می­تواند جهت افزایش ایمنی و کیفیت کلی میوه سیب مورد استفاده قرار گیرد.
 
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of ultrasonic pretreatment and osmotic dehydration on antioxidant and antimicrobial properties of yellow apple

نویسندگان English

Ahmad Reza ESkandari 1
Dornoush Jafarpour 2
1 M. Sc. Graduated of the Department of Food Science and Technology, Fasa Branch, Islamic Azad University, Fasa, Iran
2 Assistant professor of the Department of Food Science and Technology, Faculty of Agriculture, Fasa Branch, Islamic Azad University, Fasa, Iran
چکیده English

Osmotic dehydration is the process of extracting water based on placing food in a hypertonic solution. The current study was performed to investigate the effectiveness of ultrasound-assisted osmotic dehydration (UAOD) on reducing foodborne pathogens (Escherichia coli, Enterococcus faecalis, Salmonella Typhi and Shigella sonnei) on apple slices. Moreover, the effects of UAOD treatment on moisture content, amount of total soluble phenolics and DPPH radical scavenging activity in treated apples were measured. Yellow apple slices were inoculated with each pathogen separately and underwent ultrasonic waves at two levels of amplitudes (40 and 70 %) for 20 min. Afterwards, the osmotic dehydration process was performed by immersing the samples in 70% sucrose solution for a contact period of 4, 8 and 12 h. Results indicated that US pre-treatment alone markedly diminished the microbial count and the reduction levels of four pathogenic bacteria enhanced with the increase of US amplitude. Furthermore, the results showed that the degree of reduction of pathogens depended on the duration of the osmotic dehydration process and the amplitude of sonication treatment. The greatest reduction in pathogens was observed at 70% amplitude after 12 h storage in an osmotic solution, in which the mean number of E. coli, E. faecalis, S. Typhi and S. sonnei was reduced to 0.1, 4.0, 3.7 and 0.1 log CFU/g, respectively. Additionally, osmotic dehydration treatment significantly reduced the amount of moisture content, total phenolics and DPPH antiradical activity of samples, and this reduction was greater in sonicated samples as compared to the control sample. It should be added that increasing the ultrasound amplitude led to a further decrease in the mentioned parameters. Therefore, this non-thermal combination processing can be used to increase the overall safety and quality of apple fruit.
 

کلیدواژه‌ها English

Yellow apple
Ultrasonic pre-treatment
Osmotic dehydration
Pathogenic bacteria
Total soluble phenolics
[1]  Karami, Z., Yousefi, G. H., & Emam-Djomeh, Z. (2013). Modeling and optimization of ultrasound-assisted osmotic dehydration with finished freeze drying on black cherries—the effect on antioxidant activities. Journal of Food Biosciences and Technology, 3, 11-22.
[2] Rezaei, R., & Moghimi, M. (2024). Optimization of combined drying (osmotic-hot air) of aloe vera slice using response surface methodology. Journal of food science and technology (Iran), 20(144), 1-24. [in Persian]
[3] Campos, C. D. M., Sato, A. C. K., Tonon, R. V., Hubinger, M. D., & Cunha, R. L. D. (2012). Effect of process variables on the osmotic dehydration of star-fruit slices. Food Science and Technology, 32, 357-365.
[4] Fathi, A. B., & Hesari, J. (2016). Drying of apricot slices using osmotic dehydration process (sucrose–salt solutions). Food Research Journal, 26(3), 491-506.
[5] Sharafatkhah, A. S., Fathi, A. B., & Alirezalu, K. (2017). Investigation on Dried Strawberries Using Osmotic Dehydration. Journal of food science and technology (Iran), 66(14), 271-281. [in Persian]
[6] Khan, M. R. (2012). Osmotic dehydration technique for fruits preservation–A review. Pakistan Journal of Food Sciences, 22(2), 71-85.
[7] Yadav, A. K., & Singh, S. V. (2014). Osmotic dehydration of fruits and vegetables: a review. Journal of food science and technology, 51, 1654-1673.
[8] Mille, Y., Beney, L., & Gervais, P. (2005). Compared tolerance to osmotic stress in various microorganisms: towards a survival prediction test. Biotechnology and Bioengineering, 92, 479–84.
[9] Wong, E., Vaillant, F., & Pérez, A. (2010). Osmosonication of blackberry juice: impact on selected pathogens, spoilage microorganisms, and main quality parameters. Journal of Food Science, 75, M468–M474.
[10] Kaveh, S., Gholamhosseinpour, A., Hashemi, S. M. B., Jafarpour, D., Castagnini, J. M., Phimolsiripol, Y., & Barba, F. J. (2023). Recent advances in ultrasound application in fermented and non‐fermented dairy products: Antibacterial and bioactive properties. International Journal of Food Science & Technology, 58(7), 3591-3607.
[11] United States Food and Drug Administration (U.S. FDA), Kinetics of microbial inactivation for alternative food processing technologies (2000). www.fda.gov/downloads/food/foodb orneillnesscontaminants/ucm545175.pdf.
[12] da Silva, G. D., Barros, Z. M. P., de Medeiros, R. A. B., de Carvalho, C. B. O., Brandão, S. C. R., & Azoubel, P. M. (2016). Pretreatments for melon drying implementing ultrasound and vacuum. Lwt, 74, 114-119.
[13] Cárdenas-Pérez, S., Chanona-Pérez, J., Méndez-Méndez, J. V, Calderón-Domínguez, G., López-Santiago, R., Perea-Flores, M. J., & Arzate-Vázquez, I. (2017). Evaluation of the ripening stages of apple (Golden Delicious) by means of computer vision system. Biosystems Engineering, 159, 46–58.
[14] National portal of statistics, 2023, https://www.amar.org.ir.
[15] Delgado, J. M. P. Q., & da Silva, M. V. (2014). Food dehydration: Fundamentals, modelling and applications. Transport Phenomena and Drying of Solids and Particulate Materials, 69-94.
[16] Filipović, I., Markov, S., Filipović, V., Filipović, J., Vujačić, V., & Pezo, L. (2019). The effects of the osmotic dehydration parameters on reduction of selected microorganisms on chicken meat. Journal of Food Processing and Preservation. 43(10), e14144.
[17] Osae, R., Zhou, C., Tchabo, W., Xu, B., Bonah, E., Alenyorege, E. A., & Ma, H. (2019). Optimization of osmosonication pretreatment of ginger (Zingiber officinale Roscoe) using response surface methodology: Effect on antioxidant activity, enzyme inactivation, phenolic compounds, and physical properties. Journal of Food Process Engineering, 42(10), 1–17.
[18] Fujikawa, H., & Tsubaki, H. (2019). Characteristics of microbial colony counts on agar plates for food and microbial culture samples. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi), 60(4), 88-95.
[19] AOAC, Ofcial Methods of Analysis, 15th edn. (Association of Ofcial Analytical Chemists, Washington, DC, 1999).
[20] Hillis, W. E., & Swain, T. (1959). The phenolic constituents of Prunus domestica. II.—The analysis of tissues of the Victoria plum tree. Journal of the Science of Food and Agriculture, 10(2), 135–144.
[21] Lee, J. H., Jeong, C. S., & Kim, G. H. (2009). Antioxidant and suppressive effects of ethanolic extract fractions from safflower (Carthamus tinctorius L.) flower on the biosynthesis of inflammatory mediators from LPS-stimulated RAW 264.7 cells. Food science and biotechnology, 18(1), 143-149.
[22] Kordowska-Wiater, M., & Stasiak, D. M. (2011). Effect of ultrasound on survival of gram negative bacteria on chicken skin surface. Bulletin of the Veterinary Institute in Pulawy, 55, 207–210.
[23] Dehghani, M. H. (2005). Effectiveness of ultrasound on the destruction of E. coli. American journal of environmental sciences, 1(3), 187-189.
[24] Sagong, H., Lee, S., Chang, P., Heu, S., Ryu, S., Choi, Y., & Kang, D. (2011). Combined effect of ultrasound and organic acids to reduce Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. International Journal of Food Microbiology, 145, 287–292.
[25] Patist, A., & Bates, D. (2008). Ultrasonic innovations in the food industry: from the laboratory to commercial production. Innovative Food Science and Emerging Technologies, 9, 147– 154.
[26] Hashemi, S. M. B., Jafarpour, D., Soto, E. R., & Barba, F. J. (2022). Ultrasound-assisted lactic acid fermentation of Bakraei (Citrus reticulata cv. Bakraei) juice: Physicochemical and bioactive properties. Fermentation, 9(1), 37.
[27] Tortora, G. J., Funke, B. R., & Case, C. L. (2013). Microbiology: An introduction (11th ed.). Glenview, IL: Pearson Education Inc.
[28] Wong, E., Vaillant, F., Chaves-Olarte, E. (2012). Synergistic effect of sonication and high osmotic pressure enhances membrane damage and viability loss of Salmonella in orange juice. Food Research International, 45, 1072–1079.
[29] Luchese, C. L., Gurak, P. D., & Ferreira Marczak, L. D. (2015). Short Communication: Osmotic Dehydration of Physalis – Influence of Ultrasound Pretreatment. Food Engineering Reviews, 7, 193-197.
[30] Nowacka, M., Tylewicz, U., Romani, S., Dalla Rosa, M., & Witrowa-Rajchert, D. (2017). Influence of ultrasound-assisted osmotic dehydration on the main quality parameters of kiwifruit. Innovative Food Science & Emerging Technologies, 41, 71-78.
[31] Shamaei, S., Emam‐djomeh, Z., & Moini, S. (2012). Ultrasound‐assisted osmotic dehydration of cranberries: effect of finish drying methods and ultrasonic frequency on textural properties. Journal of Texture Studies, 43(2), 133-141.
[32] Rahaman, A., Zeng, X.-A., Kumari, A., Rafiq, M., Siddeeg, A., Manzoor, M.F., Bloch, Z., & Ahmad, Z. (2019). Influence of ultrasound-assisted osmotic dehydration on texture, bioactive compounds and metabolites analysis of plum. Ultrasonics Sonochemistry, 58, 104643.
[33] Lee, J., & Lim, L. (2011). Osmo-dehydration pretreatment for drying of pumpkin slice. International Food Research Journal, 18(4), 1223.
[34] Garcia-Noguera, J., Oliveira, F. I., Gallão, M. I., Weller, C. L., Rodrigues, S., & Fernandes, F. A. (2010). Ultrasound-assisted osmotic dehydration of strawberries: effect of pretreatment time and ultrasonic frequency. Drying Technology, 28(2), 294-303.
[35] Çağlayan, D., & Barutçu Mazı, I. (2018). Effects of ultrasound ‐assisted osmotic dehydration as a pretreatment and finish drying methods on the quality of pumpkin slices. Journal of Food Processing and Preservation, 42, e13679.
[36] Bermúdez Aguirre, D., Mobbs, T., & Barbosa-Cánovas, G.V. (2011). Ultrasound applications in food processing. In: Feng, H., Barbosa-Cánovas, G.V., Weiss, J. (Eds.), Ultrasound Technologies for Food and Bioprocessing. Springer, New York, pp. 65–105.
[37] Alighourchi, H. R., Barzegar, M., Sahari, M. A., & Abbasi, S. (2013). Effect of sonication on anthocyanins, total phenolic content, and antioxidant capacity of pomegranate juices. International Food Research Journal, 20(4), 1703-1709.
[38] Bhat, R., Kamaruddin, N. S. B. C., Min-Tze, L. & Karim, A. A. (2011). Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrasonics Sonochemistry, 18(6), 1295-1300.
[39] Jafarpour, D., Hashemi, S. M. B., & Ghaedi, A. (2021). Study the antibacterial properties of different parts of saffron extract and their application in cream. Journal of food science and technology (Iran), 18(115), 339-349. [in Persian]
[40] Hamedi, F., Mohebbi, M., Shahidi, F., & Azarpazhooh, E. (2018). Ultrasound-assisted osmotic treatment of model food impregnated with pomegranate peel phenolic compounds: Mass transfer, texture, and phenolic evaluations. Food and Bioprocess Technology, 11, 1061–1074.
[41] Jafarpour, D. (2022). The effect of heat treatment and thermosonication on the microbial and quality properties of green olive. Journal of Food Measurement and Characterization, 16(3), 2172-2180.