[1] Ganesan, D., Rajendran, A., & Thangavelu, V. (2009). An overview on the recent advances in the transesterification of vegetable oils for biodiesel production using chemical and biocatalysts. Reviews in Environmental Science and Bio/Technology, 8, 367-394.
[2] Parawira, W. (2009). Biotechnological production of biodiesel fuel using biocatalysed transesterification: a review. Critical reviews in biotechnology, 29(2), 82-93.
[3] Bhan, C., & Singh, J. (2020). Role of microbial lipases in transesterification process for biodiesel production. Environmental Sustainability, 3, 257-266.
[4] Patel, A., Karageorgou, D., Rova, E., Katapodis, P., Rova, U., Christakopoulos, P., & Matsakas, L. (2020). An overview of potential oleaginous microorganisms and their role in biodiesel and omega-3 fatty acid-based industries. Microorganisms, 8(3), 434.
[5] Demirbas, A. (2008). Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy conversion and management, 49(1), 125-130.
[6] Kayode, B., & Hart, A. (2019). An overview of transesterification methods for producing biodiesel from waste vegetable oils. Biofuels, 10(3), 419-437.
[7] Kayode, B., & Hart, A. (2019). An overview of transesterification methods for producing biodiesel from waste vegetable oils. Biofuels, 10(3), 419-437.
[8] Hájek, M., Vávra, A., de Paz Carmona, H., & Kocík, J. (2021). The catalysed transformation of vegetable oils or animal fats to biofuels and bio-lubricants: a review. Catalysts, 11(9), 1118.
[9] Hymavathi, D., Prabhakar, G., & Babu, B. S. (2014). Biodiesel production from vegetable oils: an optimization process. International Journal of Chemical & Petrochemical Technology (IJCPT), 4(2), 21-30.
[10] Ghaly, A. E., Dave, D., Brooks, M. S., & Budge, S. (2010). Production of biodiesel by enzymatic transesterification. Am J Biochem Biotechnol, 6(2), 54-76.
[11] Badday, A. S., Abdullah, A. Z., Lee, K. T., & Khayoon, M. S. (2012). Intensification of biodiesel production via ultrasonic-assisted process: A critical review on fundamentals and recent development. Renewable and Sustainable Energy Reviews, 16(7), 4574-4587.
[12] Cako, E., Wang, Z., Castro-Muñoz, R., Rayaroth, M. P., & Boczkaj, G. (2022). Cavitation based cleaner technologies for biodiesel production and processing of hydrocarbon streams: A perspective on key fundamentals, missing process data and economic feasibility–A review. Ultrasonics sonochemistry, 88, 106081.
[13] De Blasio, C., & De Blasio, C. (2019). Biodiesel. Fundamentals of Biofuels Engineering and Technology, 253-265.
[14] Aqeel, A., Zafar, J., Mohammadi, P., Tabatabaei, M., Aghbashlo, M., Mahlia, T. I., & Nizami, A. S. (2023). Biodiesel: the fundamentals. In Sustainable Biodiesel (pp. 1-20). Academic Press.
[15] Li, H., Cann, A. F., & Liao, J. C. (2010). Biofuels: biomolecular engineering fundamentals and advances. Annual review of chemical and biomolecular engineering, 1(1), 19-36.
[16] Ferreira Maluf Braga, A., & Zaiat, M. (2022). Fundamentals of biofuel production using anaerobic digestion: metabolic pathways and factors affecting the process. Renewable Energy Technologies for Energy Efficient Sustainable Development, 3-21.
[17] Montcho Papin, S., Christian, K. T., Pascal, A. D., Assou, S., & Sohounhloue, C. K. (2018). Comparative study of transesterification processes for biodiesel production (A review). Elixir Applied Chemistry, 120, 51235-51242.
[18] Ideris, F., Zamri, M. F. M. A., Shamsuddin, A. H., Nomanbhay, S., Kusumo, F., Fattah, I. M. R., & Mahlia, T. M. I. (2022). Progress on conventional and advanced techniques of in situ transesterification of microalgae lipids for biodiesel production. Energies, 15(19), 7190.
[19] Kafuku, G., & Mbarawa, M. (2013). Influence of fatty acid profiles during supercritical transesterification of conventional and non-conventional feedstocks: a review. American Journal of analytical chemistry, 2013.
[20] Lee, J. C., Lee, B., Heo, J., Kim, H. W., & Lim, H. (2019). Techno-economic assessment of conventional and direct-transesterification processes for microalgal biomass to biodiesel conversion. Bioresource Technology, 294, 122173.
[21] Haq, I. U., Akram, A., Nawaz, A., Abbas, S. Z., Xu, Y., & Rafatullah, M. (2021). Comparative analysis of various waste cooking oils for esterification and transesterification processes to produce biodiesel. Green Chemistry Letters and Reviews, 14(3), 462-473.
[22] Patil, P., Gude, V. G., Pinappu, S., & Deng, S. (2011). Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and microwave heating conditions. Chemical Engineering Journal, 168(3), 1296-1300.
[23] Moazeni, F., Chen, Y. C., & Zhang, G. (2019). Enzymatic transesterification for biodiesel production from used cooking oil, a review. Journal of cleaner production, 216, 117-128.
[24] Brask, J., Damstrup, M. L., Nielsen, P. M., Holm, H. C., Maes, J., & De Greyt, W. (2011). Combining enzymatic esterification with conventional alkaline transesterification in an integrated biodiesel process. Applied biochemistry and biotechnology, 163, 918-927.
[25] Salaheldeen, M., Mariod, A. A., Aroua, M. K., Rahman, S. A., Soudagar, M. E. M., & Fattah, I. R. (2021). Current state and perspectives on transesterification of triglycerides for biodiesel production. Catalysts, 11(9), 1121.
[26] Maleki, B., Talesh, S. A., & Mansouri, M. (2022). Comparison of catalysts types performance in the generation of sustainable biodiesel via transesterification of various oil sources: A review study. Materials Today Sustainability, 18, 100157.
[27] Kumari, A., Kundu, P. K., Gupta, M. M., Bala, K., Chandra, S., Dutta, R., & Das, A. (2022). Role of microorganisms in production of biofuels. In Novel feedstocks for biofuels production (pp. 65-116). Singapore: Springer Nature Singapore.
[28] Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., & Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable energy, 34(1), 1-5.
[29] Yi, Y. (2021). Tiny bugs play big role: Microorganisms’ contribution to biofuel production. In Advances in 2nd generation of bioethanol production (pp. 113-136). Woodhead Publishing.
[30] Basak, A. K., Basak, S. M., Strzałka, K., & Chatterjee, P. K. (2021). The role of microbes in biofuel production. In Biofuel from Microbes and Plants (pp. 65-127). CRC Press.
[31] Carreiro, S. C. (2024). The importance of microorganisms for biofuels production. In Agroenergy (pp. 253-263). Woodhead Publishing.
[32] Adetunji, C. O., Olaniyan, O. T., & Okeke, N. E. (2020). Production of next-generation biodiesel from high yielding strains of microorganisms: Recent advances. Sustainable Green Chemical Processes and their Allied Applications, 31-43.
[33] Zhang, L., Loh, K. C., Kuroki, A., Dai, Y., & Tong, Y. W. (2021). Microbial biodiesel production from industrial organic wastes by oleaginous microorganisms: current status and prospects. Journal of Hazardous Materials, 402, 123543.
[34] Liu, Y., Li, C., Wang, S., & Chen, W. (2014). Solid-supported microorganism of Burkholderia cenocepacia cultured via solid state fermentation for biodiesel production: optimization and kinetics. Applied energy, 113, 713-721.
[35] Louhasakul, Y., Cheirsilp, B., Maneerat, S., & Prasertsan, P. (2018). Direct transesterification of oleaginous yeast lipids into biodiesel: development of vigorously stirred tank reactor and process optimization. Biochemical Engineering Journal, 137, 232-238.
[36] Elhussieny, N. I., El-Refai, H. A., Mohamed, S. S., Shetaia, Y. M., Amin, H. A., & Klöck, G. (2023). Rhizopus stolonifer biomass catalytic transesterification capability: optimization of cultivation conditions. Microbial Cell Factories, 22(1), 154.
[37] Yousuf, A., Khan, M. R., Islam, M. A., Wahid, Z. A., & Pirozzi, D. (2017). Technical difficulties and solutions of direct transesterification process of microbial oil for biodiesel synthesis. Biotechnology letters, 39, 13-23.
[38] Loures, C. C., Amaral, M. S., Da Rós, P. C., Zorn, S. M., de Castro, H. F., & Silva, M. B. (2018). Simultaneous esterification and transesterification of microbial oil from Chlorella minutissima by acid catalysis route: A comparison between homogeneous and heterogeneous catalysts. Fuel, 211, 261-268.
[39] Nan, Y., Liu, J., Lin, R., & Tavlarides, L. L. (2015). Production of biodiesel from microalgae oil (Chlorella protothecoides) by non-catalytic transesterification in supercritical methanol and ethanol: Process optimization. The Journal of Supercritical Fluids, 97, 174-182.
[40] Lopes, A. R., Faria, C., Prieto-Fernández, Á., Trasar-Cepeda, C., Manaia, C. M., & Nunes, O. C. (2011). Comparative study of the microbial diversity of bulk paddy soil of two rice fields subjected to organic and conventional farming. Soil Biology and Biochemistry, 43(1), 115-125.
[41] Pershina, E., Valkonen, J., Kurki, P., Ivanova, E., Chirak, E., Korvigo, I., ... & Andronov, E. (2015). Comparative analysis of prokaryotic communities associated with organic and conventional farming systems. PLoS One, 10(12), e0145072.
[42] Abayasekara, L. M., Perera, J., Chandrasekharan, V., Gnanam, V. S., Udunuwara, N. A., Liyanage, D. S., ... & Ilango, J. (2017). Detection of bacterial pathogens from clinical specimens using conventional microbial culture and 16S metagenomics: a comparative study. BMC infectious diseases, 17, 1-11.
[43] Dohnalkova, A. C., Marshall, M. J., Arey, B. W., Williams, K. H., Buck, E. C., & Fredrickson, J. K. (2011). Imaging hydrated microbial extracellular polymers: comparative analysis by electron microscopy. Applied and environmental microbiology, 77(4), 1254-1262.
[44] Wu, Y., & Gadsden, S. A. (2023). Machine learning algorithms in microbial classification: a comparative analysis. Frontiers in Artificial Intelligence, 6, 1200994.
[45] Sakhno, N. G., & Gunar, O. V. (2016). Microbial identification methods in pharmaceutical analysis: Comparison and evaluation. Mathews J Pharm Sci, 1(001).
[46] Takahashi, H., Matsushita, Y., Ito, T., Nakai, Y., Nanzyo, M., Kobayashi, T., ... & Ando, S. (2018). Comparative analysis of microbial diversity and bacterial seedling disease‐suppressive activity in organic‐farmed and standardized commercial conventional soils for rice nursery cultivation. Journal of phytopathology, 166(4), 249-264.
[47] Yin, H. B., & Patel, J. (2018). Comparison of methods to determine the microbial quality of alternative irrigation waters. Agricultural Water Management, 201, 38-45.
[48] Schang, C., Henry, R., Kolotelo, P. A., Prosser, T., Crosbie, N., Grant, T., ... & McCarthy, D. T. (2016). Evaluation of techniques for measuring microbial hazards in bathing waters: A comparative study. PloS one, 11(5), e0155848.
[49] Wetzel, K., Lee, J., Lee, C. S., & Binkley, M. (2010). Comparison of microbial diversity of edible flowers and basil grown with organic versus conventional methods. Canadian Journal of Microbiology, 56(11), 943-951.
[50] Al-Sahari, M., Al-Gheethi, A. A., Mohamed, R. M. S. R., Yashni, G., Vo, D. V. N., & Ismail, N. (2022). Microbial fuel cell systems; developments, designs, efficiencies, and trends: A comparative study between the conventional and innovative systems. Chemosphere, 298, 134244.
[51] Sangkharak, K., Klomklao, S., Paichid, N., & Yunu, T. (2023). Statistical optimization for fatty acid reduction in waste cooking oil using a biological method and the continuous process for polyhydroxyalkanoate and biodiesel production. Biomass Conversion and Biorefinery, 13(11), 9841-9854.
[52] Rocha-Meneses, L., Hari, A., Inayat, A., Yousef, L. A., Alarab, S., Abdallah, M., ... & Kikas, T. (2023). Recent advances on biodiesel production from waste cooking oil (WCO): A review of reactors, catalysts, and optimization techniques impacting the production. Fuel, 348, 128514.
[53] Venkataraman, S., Rahul, R., Afrrin, M., Rajendran, D. S., Vaidyanathan, V. K., & Karthik, P. (2025). Harnessing cooking oil residue for volatile fatty acids production and its transformative role in sustainable bioenergy platforms. In Biofuels and Bioenergy (pp. 121-146). Elsevier Science Ltd.
[54] Soudagar, M. E. M., Shelare, S., Marghade, D., Belkhode, P., Nur-E-Alam, M., Kiong, T. S., ... & Fattah, I. M. R. (2024). Optimizing IC engine efficiency: A comprehensive review on biodiesel, nanofluid, and the role of artificial intelligence and machine learning. Energy Conversion and Management, 307, 118337.