Toldo, S., Mezzaroma, E., Buckley, L. F., Potere, N., Di Nisio, M., Biondi-Zoccai, G., ... & Abbate, A.
(2022). Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacology &
therapeutics, 236, 108053.
[2] Liu, D., Zeng, X., Li, X., Mehta, J. L., & Wang, X. (2018). Role of NLRP3 inflammasome in the
pathogenesis of cardiovascular diseases. Basic research in cardiology, 113, 1-14.
[3] Tong, Y., Wang, Z., Cai, L., Lin, L., Liu, J., & Cheng, J. (2020). NLRP3 inflammasome and its central
role in the cardiovascular diseases. Oxidative medicine and cellular longevity, 2020(1), 4293206.
[4] Pellegrini, C., Martelli, A., Antonioli, L., Fornai, M., Blandizzi, C., & Calderone, V. (2021). NLRP3
inflammasome in cardiovascular diseases: pathophysiological and pharmacological
implications. Medicinal Research Reviews, 41(4), 1890-1926.
[5] Toldo, S., & Abbate, A. (2024). The role of the NLRP3 inflammasome and pyroptosis in cardiovascular
diseases. Nature Reviews Cardiology, 21(4), 219-237.
[6] An, N., Gao, Y., Si, Z., Zhang, H., Wang, L., Tian, C., ... & Xing, Y. (2019). Regulatory mechanisms of
the NLRP3 inflammasome, a novel immune-inflammatory marker in cardiovascular diseases. Frontiers
in immunology, 10, 1592.
[7] Zhou, W., Chen, C., Chen, Z., Liu, L., Jiang, J., Wu, Z., ... & Chen, Y. (2018). NLRP3: a novel mediator
in cardiovascular disease. Journal of immunology research, 2018(1), 5702103.
[8] Zheng, Y., Xu, L., Dong, N., & Li, F. (2022). NLRP3 inflammasome: The rising star in cardiovascular
diseases. Frontiers in Cardiovascular Medicine, 9, 927061.
[9] Mo, B., Ding, Y., & Ji, Q. (2025). NLRP3 inflammasome in cardiovascular diseases: an update. Frontiers
in Immunology, 16, 1550226.
[10]Takahashi, M. (2022). NLRP3 inflammasome as a key driver of vascular disease. Cardiovascular
research, 118(2), 372-385.
[11]Pavillard, L. E., Marín-Aguilar, F., Bullon, P., & Cordero, M. D. (2018). Cardiovascular diseases, NLRP3
inflammasome, and western dietary patterns. Pharmacological research, 131, 44-50.
[12]Spano, M., Di Matteo, G., Ingallina, C., Ambroselli, D., Carradori, S., Gallorini, M., ... & Mannina, L.
(2022). Modulatory properties of food and nutraceutical components targeting NLRP3 inflammasome
activation. Nutrients, 14(3), 490.
[13]Granato, D. (2022). Functional foods to counterbalance low-grade inflammation and oxidative stress in
cardiovascular diseases: a multilayered strategy combining food and health sciences. Current Opinion in
Food Science, 47, 100894.
[14]Eussen, S. R., Feenstra, T. L., Toxopeus, I. B., Hoekstra, J., Klungel, O. H., Verhagen, H., ... &
Rompelberg, C. J. (2011). Costs and health effects of adding functional foods containing phytosterols/-
stanols to statin therapy in the prevention of cardiovascular disease. European journal of
pharmacology, 668, S91-S100.
[15]Lin, X., Bo, H., Gu, J., Yi, X., Zhang, P., Liu, R., ... & Lin, C. H. (2022). Astaxanthin, a carotenoid
antioxidant, pretreatment alleviates cognitive deficits in aircraft noised mice by attenuating inflammatory
and oxidative damage to the gut, heart and hippocampus. Biomedicine & Pharmacotherapy, 148, 112777.
[16]Donia, T., & Khamis, A. (2021). Management of oxidative stress and inflammation in cardiovascular
diseases: mechanisms and challenges. Environmental Science and Pollution Research, 28(26), 34121-
34153.
[17]Toldo, S., & Abbate, A. (2018). The NLRP3 inflammasome in acute myocardial infarction. Nature
Reviews Cardiology, 15(4), 203-214.
[18]Toldo, S., Mezzaroma, E., Mauro, A. G., Salloum, F., Van Tassell, B. W., & Abbate, A. (2015). The
inflammasome in myocardial injury and cardiac remodeling. Antioxidants & redox signaling, 22(13),
1146-1161.
[19]Abbate, A., Toldo, S., Marchetti, C., Kron, J., Van Tassell, B. W., & Dinarello, C. A. (2020). Interleukin1 and the inflammasome as therapeutic targets in cardiovascular disease. Circulation research, 126(9),
1260-1280.
[20]Toldo, S., Mauro, A. G., Cutter, Z., & Abbate, A. (2018). Inflammasome, pyroptosis, and cytokines in
myocardial ischemia-reperfusion injury. American Journal of Physiology-Heart and Circulatory
Physiology, 315(6), H1553-H1568.
[21]Mezzaroma, E., Abbate, A., & Toldo, S. (2021). NLRP3 inflammasome inhibitors in cardiovascular
diseases. Molecules, 26(4), 976.
[22]Moore, K. J., Sheedy, F. J., & Fisher, E. A. (2013). Macrophages in atherosclerosis: a dynamic
balance. Nature Reviews Immunology, 13(10), 709-721.
[23]Pazár, B., Ea, H. K., Narayan, S., Kolly, L., Bagnoud, N., Chobaz, V., ... & Busso, N. (2011). Basic
calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3
inflammasome in vitro. The Journal of Immunology, 186(4), 2495-2502.
[24]Duewell, P., Kono, H., Rayner, K. J., Sirois, C. M., Vladimer, G., Bauernfeind, F. G., ... & Latz, E. (2010).
NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol
crystals. Nature, 464(7293), 1357-1361.
[25]Sun, Q., Fan, J., Billiar, T. R., & Scott, M. J. (2017). Inflammasome and autophagy regulation: a two-way
street. Molecular Medicine, 23, 188-195.
[26]Liu, Y., Lian, K., Zhang, L., Wang, R., Yi, F., Gao, C., ... & Tao, L. (2014). TXNIP mediates NLRP3
inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial
ischemia/reperfusion injury. Basic research in cardiology, 109, 1-14.
[27]Kawaguchi, M., Takahashi, M., Hata, T., Kashima, Y., Usui, F., Morimoto, H., ... & Ikeda, U. (2011).
Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion
injury. Circulation, 123(6), 594-604.
[28]Toldo, S., Marchetti, C., Mauro, A. G., Chojnacki, J., Mezzaroma, E., Carbone, S., ... & Abbate, A. (2016).
Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischemia–
reperfusion in the mouse. International Journal of Cardiology, 209, 215-220.
[29]Westman, P. C., Lipinski, M. J., Luger, D., Waksman, R., Bonow, R. O., Wu, E., & Epstein, S. E. (2016).
Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. Journal
of the American College of Cardiology, 67(17), 2050-2060.
[30]Seropian, I. M., Toldo, S., Van Tassell, B. W., & Abbate, A. (2014). Anti-inflammatory strategies for
ventricular remodeling following ST-segment elevation acute myocardial infarction. Journal of the
American College of Cardiology, 63(16), 1593-1603.
[31]Zeng, C., Duan, F., Hu, J., Luo, B., Huang, B., Lou, X., ... & Tan, H. (2020). NLRP3 inflammasomemediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox
biology, 34, 101523.
32]Gan, W., Ren, J., Li, T., Lv, S., Li, C., Liu, Z., & Yang, M. (2018). The SGK1 inhibitor EMD638683,
prevents Angiotensin II–induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome
activation. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1864(1), 1-10.
[33]Lian, D., Lai, J., Wu, Y., Wang, L., Chen, Y., Zhang, Y., ... & Chen, Y. (2018). Cathepsin B-mediated
NLRP3 inflammasome formation and activation in angiotensin II-induced hypertensive mice: role of
macrophage digestion dysfunction. Cellular Physiology and Biochemistry, 50(4), 1585-1600.
[34]Suetomi, T., Willeford, A., Brand, C. S., Cho, Y., Ross, R. S., Miyamoto, S., & Brown, J. H. (2018).
Inflammation and NLRP3 inflammasome activation initiated in response to pressure overload by
Ca2+/calmodulin-dependent protein kinase II δ signaling in cardiomyocytes are essential for adverse
cardiac remodeling. Circulation, 138(22), 2530-2544.
[35]Renu, K., Abilash, V. G., PB, T. P., & Arunachalam, S. (2018). Molecular mechanism of doxorubicininduced cardiomyopathy–An update. European journal of pharmacology, 818, 241-253.
[36]Singla, D. K., Johnson, T. A., & Tavakoli Dargani, Z. (2019). Exosome treatment enhances antiinflammatory M2 macrophages and reduces inflammation-induced pyroptosis in doxorubicin-induced
cardiomyopathy. Cells, 8(10), 1224.
[37]Singla, D. K., Johnson, T. A., & Tavakoli Dargani, Z. (2019). Exosome treatment enhances antiinflammatory M2 macrophages and reduces inflammation-induced pyroptosis in doxorubicin-induced
cardiomyopathy. Cells, 8(10), 1224.
[38]Cai, J., Lu, S., Yao, Z., Deng, Y. P., Zhang, L. D., Yu, J. W., ... & Jiang, G. J. (2014). Glibenclamide
attenuates myocardial injury by lipopolysaccharides in streptozotocin-induced diabetic
mice. Cardiovascular diabetology, 13, 1-11.
[39]Ralston, J. C., Lyons, C. L., Kennedy, E. B., Kirwan, A. M., & Roche, H. M. (2017). Fatty acids and
NLRP3 inflammasome–mediated inflammation in metabolic tissues. Annual review of nutrition, 37(1),
77-102.
[40]Feng, H., Gu, J., Gou, F., Huang, W., Gao, C., Chen, G., ... & Xu, Y. (2016). High glucose and
lipopolysaccharide prime NLRP3 inflammasome via ROS/TXNIP pathway in mesangial cells. Journal
of Diabetes Research, 2016(1), 6973175.
[41]Chen, W., Zhao, M., Zhao, S., Lu, Q., Ni, L., Zou, C., ... & Qiu, Q. (2017). Activation of the
TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic retinopathy: a novel
inhibitory effect of minocycline. Inflammation Research, 66, 157-166.
[42]Mauro, A. G., Bonaventura, A., Vecchié, A., Mezzaroma, E., Carbone, S., Narayan, P., ... & Toldo, S.
(2021). The role of NLRP3 inflammasome in pericarditis: potential for therapeutic approaches. Basic to
Translational Science, 6(2), 137-150.
[43]Klein, A. L., Imazio, M., Cremer, P., Brucato, A., Abbate, A., Fang, F., ... & Paolini, J. F. (2021). Phase 3
trial of interleukin-1 trap rilonacept in recurrent pericarditis. New England Journal of Medicine, 384(1),
31-41.
[44]Brucato, A., Imazio, M., Gattorno, M., Lazaros, G., Maestroni, S., Carraro, M., ... & Martini, A. (2016).
Effect of anakinra on recurrent pericarditis among patients with colchicine resistance and corticosteroid
dependence: the AIRTRIP randomized clinical trial. Jama, 316(18), 1906-1912.
[45]Wang, Y., Gao, B., & Xiong, S. (2014). Involvement of NLRP3 inflammasome in CVB3-induced viral
myocarditis. American Journal of Physiology-Heart and Circulatory Physiology, 307(10), H1438-
H1447.
[46]Wang, Y., Jia, L., Shen, J., Wang, Y., Fu, Z., Su, S. A., ... & Xiang, M. (2018). Cathepsin B aggravates
coxsackievirus B3-induced myocarditis through activating the inflammasome and promoting
pyroptosis. PLoS pathogens, 14(1), e1006872.
[47]Kron, J., Mauro, A. G., Bonaventura, A., Toldo, S., Salloum, F. N., Ellenbogen, K. A., & Abbate, A.
(2019). Inflammasome formation in granulomas in cardiac sarcoidosis. Circulation: Arrhythmia and
Electrophysiology, 12(9), e007582.
[48]Gupta, N., Sahu, A., Prabhakar, A., Chatterjee, T., Tyagi, T., Kumari, B., ... & Ashraf, M. Z. (2017).
Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to
hypoxia. Proceedings of the National Academy of Sciences, 114(18), 4763-4768.
[49]Yadav, V., Chi, L., Zhao, R., Tourdot, B. E., Yalavarthi, S., Jacobs, B. N., ... & Kanthi, Y. (2019). ENTPD1 disrupts inflammasome IL-1β–driven venous thrombosis. The Journal of clinical investigation, 129(7),
2872-2877.
[50]Campos, J., Ponomaryov, T., De Prendergast, A., Whitworth, K., Smith, C. W., Khan, A. O., ... & Brill,
A. (2021). Neutrophil extracellular traps and inflammasomes cooperatively promote venous thrombosis
in mice. Blood advances, 5(9), 2319-2324.
[51]Rabinovich, A., Cohen, J. M., Cushman, M., Kahn, S. R., Anderson, D. R., Chagnon, I., ... & Yeo, E.
(2015). Association between inflammation biomarkers, anatomic extent of deep venous thrombosis, and
venous symptoms after deep venous thrombosis. Journal of Vascular Surgery: Venous and Lymphatic
Disorders, 3(4), 347-353.
[52]Wu, C., Lu, W., Zhang, Y., Zhang, G., Shi, X., Hisada, Y., ... & Li, Z. (2019). Inflammasome activation
triggers blood clotting and host death through pyroptosis. Immunity, 50(6), 1401-1411.
[53]Roumen-Klappe, E. M., Janssen, M. C. H., Van Rossum, J., Holewijn, S., Van Bokhoven, M. M. J. A.,
Kaasjager, K., ... & Den Heijer, M. (2009). Inflammation in deep vein thrombosis and the development
of post-thrombotic syndrome: a prospective study. Journal of Thrombosis and Haemostasis, 7(4), 582-
587.
[54]Jara-Palomares, L., Solier-Lopez, A., Elias-Hernandez, T., Asensio-Cruz, M. I., Blasco-Esquivias, I.,
Sanchez-Lopez, V., ... & Otero-Candelera, R. (2018). D-dimer and high-sensitivity C-reactive protein levels to predict venous thromboembolism recurrence after discontinuation of anticoagulation for cancerassociated thrombosis. British journal of cancer, 119(8), 915-921.
[55]Kunutsor, S. K., Seidu, S., Blom, A. W., Khunti, K., & Laukkanen, J. A. (2017). Serum C-reactive protein
increases the risk of venous thromboembolism: a prospective study and meta-analysis of published
prospective evidence. European Journal of Epidemiology, 32, 657-667.
[56]Zheng, M., Williams, E. P., Malireddi, R. S., Karki, R., Banoth, B., Burton, A., ... & Kanneganti, T. D.
(2020). Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via
caspase-8/RIPK3 during coronavirus infection. Journal of Biological Chemistry, 295(41), 14040-14052.
[57]Gupta, N., Sahu, A., Prabhakar, A., Chatterjee, T., Tyagi, T., Kumari, B., ... & Ashraf, M. Z. (2017).
Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to
hypoxia. Proceedings of the National Academy of Sciences, 114(18), 4763-4768.
[58]Colling, M. E., Tourdot, B. E., & Kanthi, Y. (2021). Inflammation, infection and venous
thromboembolism. Circulation research, 128(12), 2017-2036.
[59]Pellegrini, C., Martelli, A., Antonioli, L., Fornai, M., Blandizzi, C., & Calderone, V. (2021). NLRP3
inflammasome in cardiovascular diseases: pathophysiological and pharmacological
implications. Medicinal Research Reviews, 41(4), 1890-1926.
[60]Hotamisligil, G. S. (2017). Inflammation, metaflammation and immunometabolic
disorders. Nature, 542(7640), 177-185.
[61]Alvarenga, L., Cardozo, L. F., Borges, N. A., Lindholm, B., Stenvinkel, P., Shiels, P. G., ... & Mafra, D.
(2020). Can nutritional interventions modulate the activation of the NLRP3 inflammasome in chronic
kidney disease?. Food Research International, 136, 109306.
[62]DROBNY, E. C., ABRAMSON, E. C., & BAUMANN, G. (1984). Insulin receptors in acute infection: a
study of factors conferring insulin resistance. The Journal of Clinical Endocrinology &
Metabolism, 58(4), 710-716.
[63]Calder, P. C., Ahluwalia, N., Brouns, F., Buetler, T., Clement, K., Cunningham, K., ... & WinklhoferRoob, B. M. (2011). Dietary factors and low-grade inflammation in relation to overweight and
obesity. British journal of nutrition, 106(S3), S1-S78.
[64]Lumeng, C. N., & Saltiel, A. R. (2011). Inflammatory links between obesity and metabolic disease. The
Journal of clinical investigation, 121(6), 2111-2117.
[65]Barbaresko, J., Koch, M., Schulze, M. B., & Nöthlings, U. (2013). Dietary pattern analysis and
biomarkers of low-grade inflammation: a systematic literature review. Nutrition reviews, 71(8), 511-527.
[66]Schroder, K., & Tschopp, J. (2010). The inflammasomes. cell, 140(6), 821-832.
[67]Tack, C. J., Stienstra, R., Joosten, L. A., & Netea, M. G. (2012). Inflammation links excess fat to insulin
resistance: the role of the interleukin‐1 family. Immunological reviews, 249(1), 239-252.
[68]Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and
disease. Oxidative medicine and cellular longevity, 2(5), 270-278.
[69]Li, A. N., Li, S., Zhang, Y. J., Xu, X. R., Chen, Y. M., & Li, H. B. (2014). Resources and biological
activities of natural polyphenols. Nutrients, 6(12), 6020-6047.
[70]Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231-1246.
[71]Zhang, H., & Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and antiinflammatory effects. Current Opinion in Food Science, 8, 33-42.
[72]Chen, C. (2016). Sinapic acid and its derivatives as medicine in oxidative stress‐induced diseases and
aging. Oxidative medicine and cellular longevity, 2016(1), 3571614.
[73]Rosazza, J. P. N., Huang, Z., Dostal, L., Volm, T., & Rousseau, B. (1995). Biocatalytic transformations
of ferulic acid: an abundant aromatic natural product. Journal of industrial microbiology and
biotechnology, 15(6), 457-471.
[74]Santana-Gálvez, J., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2017). Chlorogenic acid: Recent
advances on its dual role as a food additive and a nutraceutical against metabolic
syndrome. Molecules, 22(3), 358.
[75]Ho, S. C., Chang, Y. H., & Chang, K. S. (2018). Structural moieties required for cinnamaldehyde-related
compounds to inhibit canonical IL-1β secretion. Molecules, 23(12), 3241.
[76]Liu, P., Wang, J., Wen, W., Pan, T., Chen, H., Fu, Y., ... & Xu, S. (2020). Cinnamaldehyde suppresses
NLRP3 derived IL-1β via activating succinate/HIF-1 in rheumatoid arthritis rats. International
Immunopharmacology, 84, 106570.
[77]Zeng, J., Zhang, D., Wan, X., Bai, Y., Yuan, C., Wang, T., ... & Liu, C. (2020). Chlorogenic acid suppresses
miR‐155 and ameliorates ulcerative colitis through the NF‐κB/NLRP3 inflammasome
pathway. Molecular Nutrition & Food Research, 64(23), 2000452.
[78]Lv, Y., Gao, X., Luo, Y., Fan, W., Shen, T., Ding, C., ... & Yan, L. (2019). Apigenin ameliorates HFDinduced NAFLD through regulation of the XO/NLRP3 pathways. The Journal of nutritional
biochemistry, 71, 110-121.
[79]Yamagata, K., Hashiguchi, K., Yamamoto, H., & Tagami, M. (2019). Dietary apigenin reduces induction
of LOX-1 and NLRP3 expression, leukocyte adhesion, and acetylated low-density lipoprotein uptake in
human endothelial cells exposed to trimethylamine-N-oxide. Journal of cardiovascular
pharmacology, 74(6), 558-565.
[80]An, M. F., Wang, M. Y., Shen, C., Sun, Z. R., Zhao, Y. L., Wang, X. J., & Sheng, J. (2021). Isoorientin
exerts a urate-lowering effect through inhibition of xanthine oxidase and regulation of the TLR4-NLRP3
inflammasome signaling pathway. Journal of natural medicines, 75, 129-141.
[81]Chang, Y. H., Chiang, Y. F., Chen, H. Y., Huang, Y. J., Wang, K. L., Hong, Y. H., ... & Hsia, S. M. (2021).
Anti-inflammatory and anti-hyperuricemic effects of chrysin on a high fructose corn syrup-induced
hyperuricemia rat model via the amelioration of urate transporters and inhibition of NLRP3
inflammasome signaling pathway. Antioxidants, 10(4), 564.
[82]Fu, J., Sun, H., Zhang, Y., Xu, W., Wang, C., Fang, Y., & Zhao, J. (2018). Neuroprotective effects of
luteolin against spinal cord ischemia–reperfusion injury by attenuation of oxidative stress, inflammation,
and apoptosis. Journal of Medicinal Food, 21(1), 13-20.
[83]Cao, H., Liu, J., Shen, P., Cai, J., Han, Y., Zhu, K., ... & Cao, Y. (2018). Protective effect of naringin on
DSS-induced ulcerative colitis in mice. Journal of agricultural and food chemistry, 66(50), 13133-13140.
[84]Ruiz-Miyazawa, K. W., Pinho-Ribeiro, F. A., Borghi, S. M., Staurengo-Ferrari, L., Fattori, V., Amaral, F.
A., ... & Verri Jr, W. A. (2018). Hesperidin methylchalcone suppresses experimental gout arthritis in mice
by inhibiting NF-κB activation. Journal of agricultural and food chemistry, 66(25), 6269-6280.
[85]Wang, S., Meckling, K. A., Marcone, M. F., Kakuda, Y., & Tsao, R. (2011). Synergistic, additive, and
antagonistic effects of food mixtures on total antioxidant capacities. Journal of agricultural and food
chemistry, 59(3), 960-968.
[86]Luzardo-Ocampo, I., Loarca-Piña, G., & de Mejia, E. G. (2020). Gallic and butyric acids modulated
NLRP3 inflammasome markers in a co-culture model of intestinal inflammation. Food and chemical
toxicology, 146, 111835.
[87]Wang, D., Gao, Q., Wang, T., Kan, Z., Li, X., Hu, L., ... & Granato, D. (2020). Green tea polyphenols and
epigallocatechin-3-gallate protect against perfluorodecanoic acid induced liver damage and inflammation
in mice by inhibiting NLRP3 inflammasome activation. Food Research International, 127, 108628.
[88]Wang, D., Zhang, M., Wang, T., Cai, M., Qian, F., Sun, Y., & Wang, Y. (2019). Green tea polyphenols
prevent lipopolysaccharide-induced inflammatory liver injury in mice by inhibiting NLRP3
inflammasome activation. Food & function, 10(7), 3898-3908.
[89]Ruhee, R. T., Roberts, L. A., Ma, S., & Suzuki, K. (2020). Organosulfur compounds: A review of their
anti-inflammatory effects in human health. Frontiers in nutrition, 7, 64.
[90]Putnik, P., Gabrić, D., Roohinejad, S., Barba, F. J., Granato, D., Mallikarjunan, K., ... & Kovačević, D.
B. (2019). An overview of organosulfur compounds from Allium spp.: From processing and preservation
to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food
chemistry, 276, 680-691.
[91]Dong, Z., Shang, H., Chen, Y. Q., Pan, L. L., Bhatia, M., & Sun, J. (2016). Sulforaphane protects
pancreatic acinar cell injury by modulating Nrf2‐mediated oxidative stress and NLRP3 inflammatory
pathway. Oxidative medicine and cellular longevity, 2016(1), 7864150.
[92]Ahn, H., Kim, J., Lee, M. J., Kim, Y. J., Cho, Y. W., & Lee, G. S. (2015). Methylsulfonylmethane inhibits
NLRP3 inflammasome activation. Cytokine, 71(2), 223-231.
[93]Chen, H. W., Yen, C. C., Kuo, L. L., Lo, C. W., Huang, C. S., Chen, C. C., & Lii, C. K. (2020). Benzyl
isothiocyanate ameliorates high-fat/cholesterol/cholic acid diet-induced nonalcoholic steatohepatitis
through inhibiting cholesterol crystal-activated NLRP3 inflammasome in Kupffer cells. Toxicology and
Applied Pharmacology, 393, 114941.
[94]Nan, B., Yang, C., Li, L., Ye, H., Yan, H., Wang, M., & Yuan, Y. (2021). Allicin alleviated acrylamideinduced NLRP3 inflammasome activation via oxidative stress and endoplasmic reticulum stress in
Kupffer cells and SD rats liver. Food and Chemical Toxicology, 148, 111937.
[95]Yang, W., Chen, X., Li, Y., Guo, S., Wang, Z., & Yu, X. (2020). Advances in pharmacological activities
of terpenoids. Natural Product Communications, 15(3), 1934578X20903555.
[96]Yang, N., Xia, Z., Shao, N., Li, B., Xue, L., Peng, Y., ... & Yang, Y. (2017). Carnosic acid prevents dextran
sulfate sodium-induced acute colitis associated with the regulation of the Keap1/Nrf2 pathway. Scientific
Reports, 7(1), 11036.
[97]Marcuzzi, A., Piscianz, E., Zweyer, M., Bortul, R., Loganes, C., Girardelli, M., ... & Celeghini, C. (2016).
Geranylgeraniol and neurological impairment: Involvement of apoptosis and mitochondrial
morphology. International journal of molecular sciences, 17(3), 365.
[98]Miranda, M. M., Panis, C., da Silva, S. S., Macri, J. A., Kawakami, N. Y., Hayashida, T. H., ... & Pavanelli,
W. R. (2015). Kaurenoic Acid Possesses Leishmanicidal Activity by Triggering a NLRP12/IL‐
1β/cNOS/NO Pathway. Mediators of inflammation, 2015(1), 392918.
[99]Yang, X., Wu, F., Li, L., Lynch, E. C., Xie, L., Zhao, Y., ... & Chen, G. (2021). Celastrol alleviates
metabolic disturbance in high‐fat diet‐induced obese mice through increasing energy expenditure by
ameliorating metabolic inflammation. Phytotherapy research, 35(1), 297-310.
[100] Li, J., Li, X., Wang, X., Zhong, X., Ji, L., Guo, Z., ... & Shang, X. (2019). Sesquiterpenoids and
their anti-inflammatory activity: Evaluation of Ainsliaea yunnanensis. Molecules, 24(9), 1701.
[101] Ralston, J. C., Lyons, C. L., Kennedy, E. B., Kirwan, A. M., & Roche, H. M. (2017). Fatty acids
and NLRP3 inflammasome–mediated inflammation in metabolic tissues. Annual review of
nutrition, 37(1), 77-102.
[102] Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M. T. H., ... & Ting, J. P. (2011). Fatty
acid–induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nature
immunology, 12(5), 408-415.
[103] Robblee, M. M., Kim, C. C., Abate, J. P., Valdearcos, M., Sandlund, K. L., Shenoy, M. K., ... &
Koliwad, S. K. (2016). Saturated fatty acids engage an IRE1α-dependent pathway to activate the NLRP3
inflammasome in myeloid cells. Cell reports, 14(11), 2611-2623.
[104] Gianfrancesco, M. A., Dehairs, J., L'homme, L., Herinckx, G., Esser, N., Jansen, O., ... &
Legrand-Poels, S. (2019). Saturated fatty acids induce NLRP3 activation in human macrophages through
K+ efflux resulting from phospholipid saturation and Na, K-ATPase disruption. Biochimica et Biophysica
Acta (BBA)-Molecular and Cell Biology of Lipids, 1864(7), 1017-1030.
[105] Witcher, K. J., Novick, R. P., & Schlievert, P. M. (1996). Modulation of immune cell
proliferation by glycerol monolaurate. Clinical Diagnostic Laboratory Immunology, 3(1), 10-13.
[106] Mirzaei, F., Khazaei, M., Komaki, A., Amiri, I., & Jalili, C. (2018). Virgin coconut oil (VCO)
by normalizing NLRP3 inflammasome showed potential neuroprotective effects in Amyloid-β induced
toxicity and high-fat diet fed rat. Food and Chemical Toxicology, 118, 68-83.
[107] Gao, H., Lv, Y., Liu, Y., Li, J., Wang, X., Zhou, Z., ... & Xiao, J. (2019). Wolfberry‐derived
zeaxanthin dipalmitate attenuates ethanol‐induced hepatic damage. Molecular Nutrition & Food
Research, 63(11), 1801339.
[108] Wu, L., Lyu, Y., Srinivasagan, R., Wu, J., Ojo, B., Tang, M., ... & Lin, D. (2020). Astaxanthinshifted gut microbiota is associated with inflammation and metabolic homeostasis in mice. The Journal
of Nutrition, 150(10), 2687-2698.
[109] Liu, N., Meng, B., Zeng, L., Yin, S., Hu, Y., Li, S., ... & Yang, X. (2020). Discovery of a novel
rice-derived peptide with significant anti-gout potency. Food & Function, 11(12), 10542-10553.
[110] Liu, N., Wang, Y., Zeng, L., Yin, S., Hu, Y., Li, S., ... & Yang, X. (2020). RDP3, a novel antigout
peptide derived from water extract of rice. Journal of Agricultural and Food Chemistry, 68(27), 7143-
7151.
[111] Han, J., Wang, X., Tang, S., Lu, C., Wan, H., Zhou, J., ... & Su, X. (2020). Protective effects of
tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation
mediated by gut microbiota. The FASEB Journal, 34(4), 5061-5076.
[112] Bitzer, Z. T., Wopperer, A. L., Chrisfield, B. J., Tao, L., Cooper, T. K., Vanamala, J., ... &
Lambert, J. D. (2017). Soy protein concentrate mitigates markers of colonic inflammation and loss of gut
barrier function in vitro and in vivo. The Journal of nutritional biochemistry, 40, 201-208.
[113] Huang, Y. C., Lin, C. Y., Huang, S. F., Lin, H. C., Chang, W. L., & Chang, T. C. (2010). Effect
and mechanism of ginsenosides CK and Rg1 on stimulation of glucose uptake in 3T3-L1
adipocytes. Journal of agricultural and food chemistry, 58(10), 6039-6047.
[114] Wu, Y. L., Wan, Y., Jin, X. J., OuYang, B. Q., Bai, T., Zhao, Y. Q., & Nan, J. X. (2011). 25-
OCH3-PPD induces the apoptosis of activated t-HSC/Cl-6 cells via c-FLIP-mediated NF-κB
activation. Chemico-Biological Interactions, 194(2-3), 106-112.
[115] Han, X., Song, J., Lian, L. H., Yao, Y. L., Shao, D. Y., Fan, Y., ... & Nan, J. X. (2018).
Ginsenoside 25-OCH3-PPD promotes activity of LXRs to ameliorate P2X7R-mediated NLRP3
inflammasome in the development of hepatic fibrosis. Journal of Agricultural and Food
Chemistry, 66(27), 7023-7035.
[116] Wang, F., Park, J. S., Ma, Y., Ma, H., Lee, Y. J., Lee, G. R., ... & Roh, Y. S. (2021). Ginseng
saponin enriched in Rh1 and Rg2 ameliorates nonalcoholic fatty liver disease by inhibiting inflammasome
activation. Nutrients, 13(3), 856.
[117] Han, G. C., Ko, S. K., Sung, J. H., & Chung, S. H. (2007). Compound K enhances insulin
secretion with beneficial metabolic effects in db/db mice. Journal of Agricultural and Food
Chemistry, 55(26), 10641-10648.
[118] Li, C. W., Deng, M. Z., Gao, Z. J., Dang, Y. Y., Zheng, G. D., Yang, X. J., ... & Wu, X. L. (2020).
Effects of compound K, a metabolite of ginsenosides, on memory and cognitive dysfunction in db/db
mice involve the inhibition of ER stress and the NLRP3 inflammasome pathway. Food & Function, 11(5),
4416-4427.
[119] Zhao, X. J., Yang, Y. Z., Zheng, Y. J., Wang, S. C., Gu, H. M., Pan, Y., ... & Kong, L. D. (2018).
Dataset on assessment of magnesium isoglycyrrhizinate injection for dairy diet and body weight in
fructose-induced metabolic syndrome of rats. Data in brief, 18, 69.
[120] Zheng, Y., Fan, J., Chen, H. W., & Liu, E. Q. (2019). Trametes orientalis polysaccharide
alleviates PM 2.5-induced lung injury in mice through its antioxidant and anti-inflammatory
activities. Food & function, 10(12), 8005-8015.
[121] Liang, J., Chen, S., Chen, J., Lin, J., Xiong, Q., Yang, Y., ... & Lai, X. (2018). Therapeutic roles
of polysaccharides from Dendrobium Officinaleon colitis and its underlying mechanisms. Carbohydrate
Polymers, 185, 159-168.
[122] Li, P., Xiao, N., Zeng, L., Xiao, J., Huang, J., Xu, Y., ... & Du, B. (2020). Structural
characteristics of a mannoglucan isolated from Chinese yam and its treatment effects against gut
microbiota dysbiosis and DSS-induced colitis in mice. Carbohydrate Polymers, 250, 116958.
[123] Chen, Y. S., Chen, Q. Z., Wang, Z. J., & Hua, C. (2019). Anti-inflammatory and hepatoprotective
effects of Ganoderma lucidum polysaccharides against carbon tetrachloride-induced liver injury in
Kunming mice. Pharmacology, 103(3-4), 143-150.
[124] Yang, R., Li, Y., Cai, J., Ji, J., Wang, Y., Zhang, W., ... & Chen, Y. (2020). Polysaccharides from
Armillariella tabescens mycelia ameliorate insulin resistance in type 2 diabetic mice. Food &
Function, 11(11), 9675-9685.
[125] Wu, C., Pan, L. L., Niu, W., Fang, X., Liang, W., Li, J., ... & Sun, J. (2019). Modulation of gut
microbiota by low methoxyl pectin attenuates type 1 diabetes in non-obese diabetic mice. Frontiers in
immunology, 10, 1733.
[126] Castro-Alves, V. C., Shiga, T. M., & do Nascimento, J. R. O. (2019). Polysaccharides from
chayote enhance lipid efflux and regulate NLRP3 inflammasome priming in macrophage-like THP-1 cells
exposed to cholesterol crystals. International Journal of Biological Macromolecules, 127, 502-510.
[127] Liu, Y., Wu, X., Wang, Y., Jin, W., & Guo, Y. (2020). The immunoenhancement effects of starfish
Asterias rollestoni polysaccharides in macrophages and cyclophosphamide-induced immunosuppression
mouse models. Food & Function, 11(12), 10700-10708.
[128] Wallert, M., Börmel, L., & Lorkowski, S. (2021). Inflammatory diseases and vitamin E—what
do we know and where do we go?. Molecular Nutrition & Food Research, 65(1), 2000097.
[129] Tapia, G., Silva, D., Romero, N., Pettinelli, P., Dossi, C. G., De Miguel, M., & González-Mañán,
D. (2018). Role of dietary α-and γ-tocopherol from Rosa mosqueta oil in the prevention of alterations
induced by high-fat diet in a murine model. Nutrition, 53, 1-8.
[130] Tapia, G., Silva, D., Romero, N., Pettinelli, P., Dossi, C. G., De Miguel, M., & González-Mañán,
D. (2018). Role of dietary α-and γ-tocopherol from Rosa mosqueta oil in the prevention of alterations
induced by high-fat diet in a murine model. Nutrition, 53, 1-8.
[131] Sheng, K., He, S., Sun, M., Zhang, G., Kong, X., Wang, J., & Wang, Y. (2020). Synbiotic
supplementation containing Bifidobacterium infantis and xylooligosaccharides alleviates dextran sulfate
sodium-induced ulcerative colitis. Food & Function, 11(5), 3964-3974.
[132] Suzuki, H., Yamazaki, T., Ohshio, K., Sugamata, M., Yoshikawa, M., Kanauchi, O., & Morita,
Y. (2020). A specific strain of lactic acid bacteria, lactobacillus paracasei, inhibits inflammasome
activation in vitro and prevents inflammation-related disorders. The Journal of Immunology, 205(3), 811-
821.
[133] Pan, X., Fang, X., Wang, F., Li, H., Niu, W., Liang, W., ... & Sun, J. (2019). Butyrate ameliorates
caerulein‐induced acute pancreatitis and associated intestinal injury by tissue‐specific
mechanisms. British journal of pharmacology, 176(23), 4446-4461.
[134] Chung, I. C., OuYang, C. N., Yuan, S. N., Lin, H. C., Huang, K. Y., Wu, P. S., ... & Chen, L. C.
(2019). Pretreatment with a heat-killed probiotic modulates the NLRP3 inflammasome and attenuates
colitis-associated colorectal cancer in mice. Nutrients, 11(3), 516.
[135] Loss, H., Aschenbach, J. R., Ebner, F., Tedin, K., & Lodemann, U. (2018). Effects of a
pathogenic ETEC strain and a probiotic Enterococcus faecium strain on the inflammasome response in
porcine dendritic cells. Veterinary immunology and immunopathology, 203, 78-87.
[136] Zou, Y. J., Xu, J. J., Wang, X., Zhu, Y. H., Wu, Q., & Wang, J. F. (2020). Lactobacillus johnsonii
l531 ameliorates Escherichia coli-induced cell damage via inhibiting NLRP3 inflammasome activity and
promoting ATG5/ATG16L1-mediated autophagy in porcine mammary epithelial cells. Veterinary
Sciences, 7(3), 112.