نقش NLRP3 Inflammasome در پیشرفت بیماری قلبی عروقی: ادغام علم و فناوری غذایی برای پیشرفت های درمانی

نویسندگان
1 گروه شیمی/ دانشکده تعلیم و تربیت، برای علوم محض (ابن الحیثم) دانشگاه بغداد. عراق.عراق. آی ادهمیه، میدان انتر
2 گروه شیمی / دانشکده آموزش، برای علوم محض (ابن الحیثم) دانشگاه بغداد. عراق.عراق
چکیده
NLRP3 التهابی به عنوان یک بازیکن اصلی در پیشرفت بیماری های قلبی عروقی ظاهر شده است.
بیماری ها، به عنوان یک واسطه مهم التهاب و پاسخ های ایمنی عمل می کنند. این چند پروتئین

کمپلکس در پاسخ به سیگنال های استرس مختلف فعال می شود و منجر به تولید سایتوکین های التهابی مانند IL 1β و IL 18 می شود که در پاتوژنز نقش دارند.

آترواسکلروز، انفارکتوس میوکارد و نارسایی قلبی. مطالعات اخیر برجسته شده است

پتانسیل هدف قرار دادن التهاب NLRP3 به عنوان یک استراتژی درمانی برای کاهش

پیشرفت بیماری قلبی عروقی ادغام علم و فناوری مواد غذایی امیدوار کننده است

راه هایی برای توسعه مداخلات جدید مواد مغذی و غذاهای کاربردی غنی از ترکیبات ضد التهابی مانند اسیدهای چرب امگا 3، پلی فنول ها و فلاونوئیدها نشان داده اند.

اثربخشی در تعدیل فعالیت التهابی پیشرفت در فرآوری مواد غذایی و بیوتکنولوژی

می تواند فراهمی زیستی و کارایی این ترکیبات را افزایش داده و مکملی را فراهم کند

رویکرد به دارودرمانی مرسوم علاوه بر این، درک تعاملات بین

اجزای رژیم غذایی و استعدادهای ژنتیکی ممکن است راهبردهای تغذیه شخصی را قادر سازد

پیشگیری یا درمان بیماری های قلبی عروقی همانطور که تحقیقات برای کشف پیچیدگی های این موضوع ادامه دارد

NLRP3 التهابی و نقش آن در سلامت قلب و عروق، همکاری های بین رشته ای

بین دانشمندان علوم غذایی، فناوران و محققان پزشکی برای ترجمه این موارد بسیار مهم است

یافته ها به پیشرفت های درمانی عملی
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The Role of NLRP3 Inflammasome in Cardiovascular Disease Progression: Integrating Food Science and Technology for Therapeutic Advancements

نویسندگان English

noorhan Khalid Shafeeq 1
Zena Zmat ghilan 2
1 Department of Chemistry/ College of Education, for pure Science (Ibn-Al-Haitham) University of Baghdad. Iraq.Iraq. Ai-Adhamiyah, Antar Square
2 Department of Chemistry/ College of Education, for pure Science (Ibn Al Haitham) University of Baghdad. Iraq.Iraq.
چکیده English

The NLRP3 inflammasome has emerged as a pivotal player in the progression of cardiovascular
diseases, acting as a critical mediator of inflammation and immune responses. This multi-protein

complex is activated in response to various stress signals, leading to the production of proinflammatory cytokines such as IL-1β and IL-18, which are implicated in the pathogenesis of

atherosclerosis, myocardial infarction, and heart failure. Recent studies have highlighted the

potential of targeting the NLRP3 inflammasome as a therapeutic strategy to mitigate

cardiovascular disease progression. Integrating food science and technology offers promising

avenues for developing novel interventions. Nutraceuticals and functional foods rich in antiinflammatory compounds, such as omega-3 fatty acids, polyphenols, and flavonoids, have shown

efficacy in modulating inflammasome activity. Advances in food processing and biotechnology

can enhance the bioavailability and efficacy of these compounds, providing a complementary

approach to conventional pharmacotherapy. Furthermore, understanding the interactions between

dietary components and genetic predispositions may enable personalized nutrition strategies to

prevent or treat cardiovascular diseases. As research continues to unravel the complexities of the

NLRP3 inflammasome and its role in cardiovascular health, interdisciplinary collaborations

between food scientists, technologists, and medical researchers are crucial for translating these

findings into practical therapeutic advancements.

کلیدواژه‌ها English

Cardiovascular Disease
Inflammasome
NLRP3
Therapeutic Advancements
Toldo, S., Mezzaroma, E., Buckley, L. F., Potere, N., Di Nisio, M., Biondi-Zoccai, G., ... & Abbate, A.
(2022). Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacology &
therapeutics, 236, 108053.
[2] Liu, D., Zeng, X., Li, X., Mehta, J. L., & Wang, X. (2018). Role of NLRP3 inflammasome in the
pathogenesis of cardiovascular diseases. Basic research in cardiology, 113, 1-14.
[3] Tong, Y., Wang, Z., Cai, L., Lin, L., Liu, J., & Cheng, J. (2020). NLRP3 inflammasome and its central
role in the cardiovascular diseases. Oxidative medicine and cellular longevity, 2020(1), 4293206.
[4] Pellegrini, C., Martelli, A., Antonioli, L., Fornai, M., Blandizzi, C., & Calderone, V. (2021). NLRP3
inflammasome in cardiovascular diseases: pathophysiological and pharmacological
implications. Medicinal Research Reviews, 41(4), 1890-1926.
[5] Toldo, S., & Abbate, A. (2024). The role of the NLRP3 inflammasome and pyroptosis in cardiovascular
diseases. Nature Reviews Cardiology, 21(4), 219-237.
[6] An, N., Gao, Y., Si, Z., Zhang, H., Wang, L., Tian, C., ... & Xing, Y. (2019). Regulatory mechanisms of
the NLRP3 inflammasome, a novel immune-inflammatory marker in cardiovascular diseases. Frontiers
in immunology, 10, 1592.
[7] Zhou, W., Chen, C., Chen, Z., Liu, L., Jiang, J., Wu, Z., ... & Chen, Y. (2018). NLRP3: a novel mediator
in cardiovascular disease. Journal of immunology research, 2018(1), 5702103.
[8] Zheng, Y., Xu, L., Dong, N., & Li, F. (2022). NLRP3 inflammasome: The rising star in cardiovascular
diseases. Frontiers in Cardiovascular Medicine, 9, 927061.
[9] Mo, B., Ding, Y., & Ji, Q. (2025). NLRP3 inflammasome in cardiovascular diseases: an update. Frontiers
in Immunology, 16, 1550226.
[10]Takahashi, M. (2022). NLRP3 inflammasome as a key driver of vascular disease. Cardiovascular
research, 118(2), 372-385.
[11]Pavillard, L. E., Marín-Aguilar, F., Bullon, P., & Cordero, M. D. (2018). Cardiovascular diseases, NLRP3
inflammasome, and western dietary patterns. Pharmacological research, 131, 44-50.
[12]Spano, M., Di Matteo, G., Ingallina, C., Ambroselli, D., Carradori, S., Gallorini, M., ... & Mannina, L.
(2022). Modulatory properties of food and nutraceutical components targeting NLRP3 inflammasome
activation. Nutrients, 14(3), 490.
[13]Granato, D. (2022). Functional foods to counterbalance low-grade inflammation and oxidative stress in
cardiovascular diseases: a multilayered strategy combining food and health sciences. Current Opinion in
Food Science, 47, 100894.
[14]Eussen, S. R., Feenstra, T. L., Toxopeus, I. B., Hoekstra, J., Klungel, O. H., Verhagen, H., ... &
Rompelberg, C. J. (2011). Costs and health effects of adding functional foods containing phytosterols/-
stanols to statin therapy in the prevention of cardiovascular disease. European journal of
pharmacology, 668, S91-S100.
[15]Lin, X., Bo, H., Gu, J., Yi, X., Zhang, P., Liu, R., ... & Lin, C. H. (2022). Astaxanthin, a carotenoid
antioxidant, pretreatment alleviates cognitive deficits in aircraft noised mice by attenuating inflammatory
and oxidative damage to the gut, heart and hippocampus. Biomedicine & Pharmacotherapy, 148, 112777.
[16]Donia, T., & Khamis, A. (2021). Management of oxidative stress and inflammation in cardiovascular
diseases: mechanisms and challenges. Environmental Science and Pollution Research, 28(26), 34121-
34153.
[17]Toldo, S., & Abbate, A. (2018). The NLRP3 inflammasome in acute myocardial infarction. Nature
Reviews Cardiology, 15(4), 203-214.
[18]Toldo, S., Mezzaroma, E., Mauro, A. G., Salloum, F., Van Tassell, B. W., & Abbate, A. (2015). The
inflammasome in myocardial injury and cardiac remodeling. Antioxidants & redox signaling, 22(13),
1146-1161.
[19]Abbate, A., Toldo, S., Marchetti, C., Kron, J., Van Tassell, B. W., & Dinarello, C. A. (2020). Interleukin1 and the inflammasome as therapeutic targets in cardiovascular disease. Circulation research, 126(9),
1260-1280.
[20]Toldo, S., Mauro, A. G., Cutter, Z., & Abbate, A. (2018). Inflammasome, pyroptosis, and cytokines in
myocardial ischemia-reperfusion injury. American Journal of Physiology-Heart and Circulatory
Physiology, 315(6), H1553-H1568.
[21]Mezzaroma, E., Abbate, A., & Toldo, S. (2021). NLRP3 inflammasome inhibitors in cardiovascular
diseases. Molecules, 26(4), 976.
[22]Moore, K. J., Sheedy, F. J., & Fisher, E. A. (2013). Macrophages in atherosclerosis: a dynamic
balance. Nature Reviews Immunology, 13(10), 709-721.
[23]Pazár, B., Ea, H. K., Narayan, S., Kolly, L., Bagnoud, N., Chobaz, V., ... & Busso, N. (2011). Basic
calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3
inflammasome in vitro. The Journal of Immunology, 186(4), 2495-2502.
[24]Duewell, P., Kono, H., Rayner, K. J., Sirois, C. M., Vladimer, G., Bauernfeind, F. G., ... & Latz, E. (2010).
NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol
crystals. Nature, 464(7293), 1357-1361.
[25]Sun, Q., Fan, J., Billiar, T. R., & Scott, M. J. (2017). Inflammasome and autophagy regulation: a two-way
street. Molecular Medicine, 23, 188-195.
[26]Liu, Y., Lian, K., Zhang, L., Wang, R., Yi, F., Gao, C., ... & Tao, L. (2014). TXNIP mediates NLRP3
inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial
ischemia/reperfusion injury. Basic research in cardiology, 109, 1-14.
[27]Kawaguchi, M., Takahashi, M., Hata, T., Kashima, Y., Usui, F., Morimoto, H., ... & Ikeda, U. (2011).
Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion
injury. Circulation, 123(6), 594-604.
[28]Toldo, S., Marchetti, C., Mauro, A. G., Chojnacki, J., Mezzaroma, E., Carbone, S., ... & Abbate, A. (2016).
Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischemia–
reperfusion in the mouse. International Journal of Cardiology, 209, 215-220.
[29]Westman, P. C., Lipinski, M. J., Luger, D., Waksman, R., Bonow, R. O., Wu, E., & Epstein, S. E. (2016).
Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. Journal
of the American College of Cardiology, 67(17), 2050-2060.
[30]Seropian, I. M., Toldo, S., Van Tassell, B. W., & Abbate, A. (2014). Anti-inflammatory strategies for
ventricular remodeling following ST-segment elevation acute myocardial infarction. Journal of the
American College of Cardiology, 63(16), 1593-1603.
[31]Zeng, C., Duan, F., Hu, J., Luo, B., Huang, B., Lou, X., ... & Tan, H. (2020). NLRP3 inflammasomemediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox
biology, 34, 101523.
32]Gan, W., Ren, J., Li, T., Lv, S., Li, C., Liu, Z., & Yang, M. (2018). The SGK1 inhibitor EMD638683,
prevents Angiotensin II–induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome
activation. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1864(1), 1-10.
[33]Lian, D., Lai, J., Wu, Y., Wang, L., Chen, Y., Zhang, Y., ... & Chen, Y. (2018). Cathepsin B-mediated
NLRP3 inflammasome formation and activation in angiotensin II-induced hypertensive mice: role of
macrophage digestion dysfunction. Cellular Physiology and Biochemistry, 50(4), 1585-1600.
[34]Suetomi, T., Willeford, A., Brand, C. S., Cho, Y., Ross, R. S., Miyamoto, S., & Brown, J. H. (2018).
Inflammation and NLRP3 inflammasome activation initiated in response to pressure overload by
Ca2+/calmodulin-dependent protein kinase II δ signaling in cardiomyocytes are essential for adverse
cardiac remodeling. Circulation, 138(22), 2530-2544.
[35]Renu, K., Abilash, V. G., PB, T. P., & Arunachalam, S. (2018). Molecular mechanism of doxorubicininduced cardiomyopathy–An update. European journal of pharmacology, 818, 241-253.
[36]Singla, D. K., Johnson, T. A., & Tavakoli Dargani, Z. (2019). Exosome treatment enhances antiinflammatory M2 macrophages and reduces inflammation-induced pyroptosis in doxorubicin-induced
cardiomyopathy. Cells, 8(10), 1224.
[37]Singla, D. K., Johnson, T. A., & Tavakoli Dargani, Z. (2019). Exosome treatment enhances antiinflammatory M2 macrophages and reduces inflammation-induced pyroptosis in doxorubicin-induced
cardiomyopathy. Cells, 8(10), 1224.
[38]Cai, J., Lu, S., Yao, Z., Deng, Y. P., Zhang, L. D., Yu, J. W., ... & Jiang, G. J. (2014). Glibenclamide
attenuates myocardial injury by lipopolysaccharides in streptozotocin-induced diabetic
mice. Cardiovascular diabetology, 13, 1-11.
[39]Ralston, J. C., Lyons, C. L., Kennedy, E. B., Kirwan, A. M., & Roche, H. M. (2017). Fatty acids and
NLRP3 inflammasome–mediated inflammation in metabolic tissues. Annual review of nutrition, 37(1),
77-102.
[40]Feng, H., Gu, J., Gou, F., Huang, W., Gao, C., Chen, G., ... & Xu, Y. (2016). High glucose and
lipopolysaccharide prime NLRP3 inflammasome via ROS/TXNIP pathway in mesangial cells. Journal
of Diabetes Research, 2016(1), 6973175.
[41]Chen, W., Zhao, M., Zhao, S., Lu, Q., Ni, L., Zou, C., ... & Qiu, Q. (2017). Activation of the
TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic retinopathy: a novel
inhibitory effect of minocycline. Inflammation Research, 66, 157-166.
[42]Mauro, A. G., Bonaventura, A., Vecchié, A., Mezzaroma, E., Carbone, S., Narayan, P., ... & Toldo, S.
(2021). The role of NLRP3 inflammasome in pericarditis: potential for therapeutic approaches. Basic to
Translational Science, 6(2), 137-150.
[43]Klein, A. L., Imazio, M., Cremer, P., Brucato, A., Abbate, A., Fang, F., ... & Paolini, J. F. (2021). Phase 3
trial of interleukin-1 trap rilonacept in recurrent pericarditis. New England Journal of Medicine, 384(1),
31-41.
[44]Brucato, A., Imazio, M., Gattorno, M., Lazaros, G., Maestroni, S., Carraro, M., ... & Martini, A. (2016).
Effect of anakinra on recurrent pericarditis among patients with colchicine resistance and corticosteroid
dependence: the AIRTRIP randomized clinical trial. Jama, 316(18), 1906-1912.
[45]Wang, Y., Gao, B., & Xiong, S. (2014). Involvement of NLRP3 inflammasome in CVB3-induced viral
myocarditis. American Journal of Physiology-Heart and Circulatory Physiology, 307(10), H1438-
H1447.
[46]Wang, Y., Jia, L., Shen, J., Wang, Y., Fu, Z., Su, S. A., ... & Xiang, M. (2018). Cathepsin B aggravates
coxsackievirus B3-induced myocarditis through activating the inflammasome and promoting
pyroptosis. PLoS pathogens, 14(1), e1006872.
[47]Kron, J., Mauro, A. G., Bonaventura, A., Toldo, S., Salloum, F. N., Ellenbogen, K. A., & Abbate, A.
(2019). Inflammasome formation in granulomas in cardiac sarcoidosis. Circulation: Arrhythmia and
Electrophysiology, 12(9), e007582.
[48]Gupta, N., Sahu, A., Prabhakar, A., Chatterjee, T., Tyagi, T., Kumari, B., ... & Ashraf, M. Z. (2017).
Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to
hypoxia. Proceedings of the National Academy of Sciences, 114(18), 4763-4768.
[49]Yadav, V., Chi, L., Zhao, R., Tourdot, B. E., Yalavarthi, S., Jacobs, B. N., ... & Kanthi, Y. (2019). ENTPD1 disrupts inflammasome IL-1β–driven venous thrombosis. The Journal of clinical investigation, 129(7),
2872-2877.
[50]Campos, J., Ponomaryov, T., De Prendergast, A., Whitworth, K., Smith, C. W., Khan, A. O., ... & Brill,
A. (2021). Neutrophil extracellular traps and inflammasomes cooperatively promote venous thrombosis
in mice. Blood advances, 5(9), 2319-2324.
[51]Rabinovich, A., Cohen, J. M., Cushman, M., Kahn, S. R., Anderson, D. R., Chagnon, I., ... & Yeo, E.
(2015). Association between inflammation biomarkers, anatomic extent of deep venous thrombosis, and
venous symptoms after deep venous thrombosis. Journal of Vascular Surgery: Venous and Lymphatic
Disorders, 3(4), 347-353.
[52]Wu, C., Lu, W., Zhang, Y., Zhang, G., Shi, X., Hisada, Y., ... & Li, Z. (2019). Inflammasome activation
triggers blood clotting and host death through pyroptosis. Immunity, 50(6), 1401-1411.
[53]Roumen-Klappe, E. M., Janssen, M. C. H., Van Rossum, J., Holewijn, S., Van Bokhoven, M. M. J. A.,
Kaasjager, K., ... & Den Heijer, M. (2009). Inflammation in deep vein thrombosis and the development
of post-thrombotic syndrome: a prospective study. Journal of Thrombosis and Haemostasis, 7(4), 582-
587.
[54]Jara-Palomares, L., Solier-Lopez, A., Elias-Hernandez, T., Asensio-Cruz, M. I., Blasco-Esquivias, I.,
Sanchez-Lopez, V., ... & Otero-Candelera, R. (2018). D-dimer and high-sensitivity C-reactive protein levels to predict venous thromboembolism recurrence after discontinuation of anticoagulation for cancerassociated thrombosis. British journal of cancer, 119(8), 915-921.
[55]Kunutsor, S. K., Seidu, S., Blom, A. W., Khunti, K., & Laukkanen, J. A. (2017). Serum C-reactive protein
increases the risk of venous thromboembolism: a prospective study and meta-analysis of published
prospective evidence. European Journal of Epidemiology, 32, 657-667.
[56]Zheng, M., Williams, E. P., Malireddi, R. S., Karki, R., Banoth, B., Burton, A., ... & Kanneganti, T. D.
(2020). Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via
caspase-8/RIPK3 during coronavirus infection. Journal of Biological Chemistry, 295(41), 14040-14052.
[57]Gupta, N., Sahu, A., Prabhakar, A., Chatterjee, T., Tyagi, T., Kumari, B., ... & Ashraf, M. Z. (2017).
Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to
hypoxia. Proceedings of the National Academy of Sciences, 114(18), 4763-4768.
[58]Colling, M. E., Tourdot, B. E., & Kanthi, Y. (2021). Inflammation, infection and venous
thromboembolism. Circulation research, 128(12), 2017-2036.
[59]Pellegrini, C., Martelli, A., Antonioli, L., Fornai, M., Blandizzi, C., & Calderone, V. (2021). NLRP3
inflammasome in cardiovascular diseases: pathophysiological and pharmacological
implications. Medicinal Research Reviews, 41(4), 1890-1926.
[60]Hotamisligil, G. S. (2017). Inflammation, metaflammation and immunometabolic
disorders. Nature, 542(7640), 177-185.
[61]Alvarenga, L., Cardozo, L. F., Borges, N. A., Lindholm, B., Stenvinkel, P., Shiels, P. G., ... & Mafra, D.
(2020). Can nutritional interventions modulate the activation of the NLRP3 inflammasome in chronic
kidney disease?. Food Research International, 136, 109306.
[62]DROBNY, E. C., ABRAMSON, E. C., & BAUMANN, G. (1984). Insulin receptors in acute infection: a
study of factors conferring insulin resistance. The Journal of Clinical Endocrinology &
Metabolism, 58(4), 710-716.
[63]Calder, P. C., Ahluwalia, N., Brouns, F., Buetler, T., Clement, K., Cunningham, K., ... & WinklhoferRoob, B. M. (2011). Dietary factors and low-grade inflammation in relation to overweight and
obesity. British journal of nutrition, 106(S3), S1-S78.
[64]Lumeng, C. N., & Saltiel, A. R. (2011). Inflammatory links between obesity and metabolic disease. The
Journal of clinical investigation, 121(6), 2111-2117.
[65]Barbaresko, J., Koch, M., Schulze, M. B., & Nöthlings, U. (2013). Dietary pattern analysis and
biomarkers of low-grade inflammation: a systematic literature review. Nutrition reviews, 71(8), 511-527.
[66]Schroder, K., & Tschopp, J. (2010). The inflammasomes. cell, 140(6), 821-832.
[67]Tack, C. J., Stienstra, R., Joosten, L. A., & Netea, M. G. (2012). Inflammation links excess fat to insulin
resistance: the role of the interleukin‐1 family. Immunological reviews, 249(1), 239-252.
[68]Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and
disease. Oxidative medicine and cellular longevity, 2(5), 270-278.
[69]Li, A. N., Li, S., Zhang, Y. J., Xu, X. R., Chen, Y. M., & Li, H. B. (2014). Resources and biological
activities of natural polyphenols. Nutrients, 6(12), 6020-6047.
[70]Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2(12), 1231-1246.
[71]Zhang, H., & Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and antiinflammatory effects. Current Opinion in Food Science, 8, 33-42.
[72]Chen, C. (2016). Sinapic acid and its derivatives as medicine in oxidative stress‐induced diseases and
aging. Oxidative medicine and cellular longevity, 2016(1), 3571614.
[73]Rosazza, J. P. N., Huang, Z., Dostal, L., Volm, T., & Rousseau, B. (1995). Biocatalytic transformations
of ferulic acid: an abundant aromatic natural product. Journal of industrial microbiology and
biotechnology, 15(6), 457-471.
[74]Santana-Gálvez, J., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2017). Chlorogenic acid: Recent
advances on its dual role as a food additive and a nutraceutical against metabolic
syndrome. Molecules, 22(3), 358.
[75]Ho, S. C., Chang, Y. H., & Chang, K. S. (2018). Structural moieties required for cinnamaldehyde-related
compounds to inhibit canonical IL-1β secretion. Molecules, 23(12), 3241.
[76]Liu, P., Wang, J., Wen, W., Pan, T., Chen, H., Fu, Y., ... & Xu, S. (2020). Cinnamaldehyde suppresses
NLRP3 derived IL-1β via activating succinate/HIF-1 in rheumatoid arthritis rats. International
Immunopharmacology, 84, 106570.
[77]Zeng, J., Zhang, D., Wan, X., Bai, Y., Yuan, C., Wang, T., ... & Liu, C. (2020). Chlorogenic acid suppresses
miR‐155 and ameliorates ulcerative colitis through the NF‐κB/NLRP3 inflammasome
pathway. Molecular Nutrition & Food Research, 64(23), 2000452.
[78]Lv, Y., Gao, X., Luo, Y., Fan, W., Shen, T., Ding, C., ... & Yan, L. (2019). Apigenin ameliorates HFDinduced NAFLD through regulation of the XO/NLRP3 pathways. The Journal of nutritional
biochemistry, 71, 110-121.
[79]Yamagata, K., Hashiguchi, K., Yamamoto, H., & Tagami, M. (2019). Dietary apigenin reduces induction
of LOX-1 and NLRP3 expression, leukocyte adhesion, and acetylated low-density lipoprotein uptake in
human endothelial cells exposed to trimethylamine-N-oxide. Journal of cardiovascular
pharmacology, 74(6), 558-565.
[80]An, M. F., Wang, M. Y., Shen, C., Sun, Z. R., Zhao, Y. L., Wang, X. J., & Sheng, J. (2021). Isoorientin
exerts a urate-lowering effect through inhibition of xanthine oxidase and regulation of the TLR4-NLRP3
inflammasome signaling pathway. Journal of natural medicines, 75, 129-141.
[81]Chang, Y. H., Chiang, Y. F., Chen, H. Y., Huang, Y. J., Wang, K. L., Hong, Y. H., ... & Hsia, S. M. (2021).
Anti-inflammatory and anti-hyperuricemic effects of chrysin on a high fructose corn syrup-induced
hyperuricemia rat model via the amelioration of urate transporters and inhibition of NLRP3
inflammasome signaling pathway. Antioxidants, 10(4), 564.
[82]Fu, J., Sun, H., Zhang, Y., Xu, W., Wang, C., Fang, Y., & Zhao, J. (2018). Neuroprotective effects of
luteolin against spinal cord ischemia–reperfusion injury by attenuation of oxidative stress, inflammation,
and apoptosis. Journal of Medicinal Food, 21(1), 13-20.
[83]Cao, H., Liu, J., Shen, P., Cai, J., Han, Y., Zhu, K., ... & Cao, Y. (2018). Protective effect of naringin on
DSS-induced ulcerative colitis in mice. Journal of agricultural and food chemistry, 66(50), 13133-13140.
[84]Ruiz-Miyazawa, K. W., Pinho-Ribeiro, F. A., Borghi, S. M., Staurengo-Ferrari, L., Fattori, V., Amaral, F.
A., ... & Verri Jr, W. A. (2018). Hesperidin methylchalcone suppresses experimental gout arthritis in mice
by inhibiting NF-κB activation. Journal of agricultural and food chemistry, 66(25), 6269-6280.
[85]Wang, S., Meckling, K. A., Marcone, M. F., Kakuda, Y., & Tsao, R. (2011). Synergistic, additive, and
antagonistic effects of food mixtures on total antioxidant capacities. Journal of agricultural and food
chemistry, 59(3), 960-968.
[86]Luzardo-Ocampo, I., Loarca-Piña, G., & de Mejia, E. G. (2020). Gallic and butyric acids modulated
NLRP3 inflammasome markers in a co-culture model of intestinal inflammation. Food and chemical
toxicology, 146, 111835.
[87]Wang, D., Gao, Q., Wang, T., Kan, Z., Li, X., Hu, L., ... & Granato, D. (2020). Green tea polyphenols and
epigallocatechin-3-gallate protect against perfluorodecanoic acid induced liver damage and inflammation
in mice by inhibiting NLRP3 inflammasome activation. Food Research International, 127, 108628.
[88]Wang, D., Zhang, M., Wang, T., Cai, M., Qian, F., Sun, Y., & Wang, Y. (2019). Green tea polyphenols
prevent lipopolysaccharide-induced inflammatory liver injury in mice by inhibiting NLRP3
inflammasome activation. Food & function, 10(7), 3898-3908.
[89]Ruhee, R. T., Roberts, L. A., Ma, S., & Suzuki, K. (2020). Organosulfur compounds: A review of their
anti-inflammatory effects in human health. Frontiers in nutrition, 7, 64.
[90]Putnik, P., Gabrić, D., Roohinejad, S., Barba, F. J., Granato, D., Mallikarjunan, K., ... & Kovačević, D.
B. (2019). An overview of organosulfur compounds from Allium spp.: From processing and preservation
to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food
chemistry, 276, 680-691.
[91]Dong, Z., Shang, H., Chen, Y. Q., Pan, L. L., Bhatia, M., & Sun, J. (2016). Sulforaphane protects
pancreatic acinar cell injury by modulating Nrf2‐mediated oxidative stress and NLRP3 inflammatory
pathway. Oxidative medicine and cellular longevity, 2016(1), 7864150.
[92]Ahn, H., Kim, J., Lee, M. J., Kim, Y. J., Cho, Y. W., & Lee, G. S. (2015). Methylsulfonylmethane inhibits
NLRP3 inflammasome activation. Cytokine, 71(2), 223-231.
[93]Chen, H. W., Yen, C. C., Kuo, L. L., Lo, C. W., Huang, C. S., Chen, C. C., & Lii, C. K. (2020). Benzyl
isothiocyanate ameliorates high-fat/cholesterol/cholic acid diet-induced nonalcoholic steatohepatitis
through inhibiting cholesterol crystal-activated NLRP3 inflammasome in Kupffer cells. Toxicology and
Applied Pharmacology, 393, 114941.
[94]Nan, B., Yang, C., Li, L., Ye, H., Yan, H., Wang, M., & Yuan, Y. (2021). Allicin alleviated acrylamideinduced NLRP3 inflammasome activation via oxidative stress and endoplasmic reticulum stress in
Kupffer cells and SD rats liver. Food and Chemical Toxicology, 148, 111937.
[95]Yang, W., Chen, X., Li, Y., Guo, S., Wang, Z., & Yu, X. (2020). Advances in pharmacological activities
of terpenoids. Natural Product Communications, 15(3), 1934578X20903555.
[96]Yang, N., Xia, Z., Shao, N., Li, B., Xue, L., Peng, Y., ... & Yang, Y. (2017). Carnosic acid prevents dextran
sulfate sodium-induced acute colitis associated with the regulation of the Keap1/Nrf2 pathway. Scientific
Reports, 7(1), 11036.
[97]Marcuzzi, A., Piscianz, E., Zweyer, M., Bortul, R., Loganes, C., Girardelli, M., ... & Celeghini, C. (2016).
Geranylgeraniol and neurological impairment: Involvement of apoptosis and mitochondrial
morphology. International journal of molecular sciences, 17(3), 365.
[98]Miranda, M. M., Panis, C., da Silva, S. S., Macri, J. A., Kawakami, N. Y., Hayashida, T. H., ... & Pavanelli,
W. R. (2015). Kaurenoic Acid Possesses Leishmanicidal Activity by Triggering a NLRP12/IL‐
1β/cNOS/NO Pathway. Mediators of inflammation, 2015(1), 392918.
[99]Yang, X., Wu, F., Li, L., Lynch, E. C., Xie, L., Zhao, Y., ... & Chen, G. (2021). Celastrol alleviates
metabolic disturbance in high‐fat diet‐induced obese mice through increasing energy expenditure by
ameliorating metabolic inflammation. Phytotherapy research, 35(1), 297-310.
[100] Li, J., Li, X., Wang, X., Zhong, X., Ji, L., Guo, Z., ... & Shang, X. (2019). Sesquiterpenoids and
their anti-inflammatory activity: Evaluation of Ainsliaea yunnanensis. Molecules, 24(9), 1701.
[101] Ralston, J. C., Lyons, C. L., Kennedy, E. B., Kirwan, A. M., & Roche, H. M. (2017). Fatty acids
and NLRP3 inflammasome–mediated inflammation in metabolic tissues. Annual review of
nutrition, 37(1), 77-102.
[102] Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M. T. H., ... & Ting, J. P. (2011). Fatty
acid–induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nature
immunology, 12(5), 408-415.
[103] Robblee, M. M., Kim, C. C., Abate, J. P., Valdearcos, M., Sandlund, K. L., Shenoy, M. K., ... &
Koliwad, S. K. (2016). Saturated fatty acids engage an IRE1α-dependent pathway to activate the NLRP3
inflammasome in myeloid cells. Cell reports, 14(11), 2611-2623.
[104] Gianfrancesco, M. A., Dehairs, J., L'homme, L., Herinckx, G., Esser, N., Jansen, O., ... &
Legrand-Poels, S. (2019). Saturated fatty acids induce NLRP3 activation in human macrophages through
K+ efflux resulting from phospholipid saturation and Na, K-ATPase disruption. Biochimica et Biophysica
Acta (BBA)-Molecular and Cell Biology of Lipids, 1864(7), 1017-1030.
[105] Witcher, K. J., Novick, R. P., & Schlievert, P. M. (1996). Modulation of immune cell
proliferation by glycerol monolaurate. Clinical Diagnostic Laboratory Immunology, 3(1), 10-13.
[106] Mirzaei, F., Khazaei, M., Komaki, A., Amiri, I., & Jalili, C. (2018). Virgin coconut oil (VCO)
by normalizing NLRP3 inflammasome showed potential neuroprotective effects in Amyloid-β induced
toxicity and high-fat diet fed rat. Food and Chemical Toxicology, 118, 68-83.
[107] Gao, H., Lv, Y., Liu, Y., Li, J., Wang, X., Zhou, Z., ... & Xiao, J. (2019). Wolfberry‐derived
zeaxanthin dipalmitate attenuates ethanol‐induced hepatic damage. Molecular Nutrition & Food
Research, 63(11), 1801339.
[108] Wu, L., Lyu, Y., Srinivasagan, R., Wu, J., Ojo, B., Tang, M., ... & Lin, D. (2020). Astaxanthinshifted gut microbiota is associated with inflammation and metabolic homeostasis in mice. The Journal
of Nutrition, 150(10), 2687-2698.
[109] Liu, N., Meng, B., Zeng, L., Yin, S., Hu, Y., Li, S., ... & Yang, X. (2020). Discovery of a novel
rice-derived peptide with significant anti-gout potency. Food & Function, 11(12), 10542-10553.
[110] Liu, N., Wang, Y., Zeng, L., Yin, S., Hu, Y., Li, S., ... & Yang, X. (2020). RDP3, a novel antigout
peptide derived from water extract of rice. Journal of Agricultural and Food Chemistry, 68(27), 7143-
7151.
[111] Han, J., Wang, X., Tang, S., Lu, C., Wan, H., Zhou, J., ... & Su, X. (2020). Protective effects of
tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation
mediated by gut microbiota. The FASEB Journal, 34(4), 5061-5076.
[112] Bitzer, Z. T., Wopperer, A. L., Chrisfield, B. J., Tao, L., Cooper, T. K., Vanamala, J., ... &
Lambert, J. D. (2017). Soy protein concentrate mitigates markers of colonic inflammation and loss of gut
barrier function in vitro and in vivo. The Journal of nutritional biochemistry, 40, 201-208.
[113] Huang, Y. C., Lin, C. Y., Huang, S. F., Lin, H. C., Chang, W. L., & Chang, T. C. (2010). Effect
and mechanism of ginsenosides CK and Rg1 on stimulation of glucose uptake in 3T3-L1
adipocytes. Journal of agricultural and food chemistry, 58(10), 6039-6047.
[114] Wu, Y. L., Wan, Y., Jin, X. J., OuYang, B. Q., Bai, T., Zhao, Y. Q., & Nan, J. X. (2011). 25-
OCH3-PPD induces the apoptosis of activated t-HSC/Cl-6 cells via c-FLIP-mediated NF-κB
activation. Chemico-Biological Interactions, 194(2-3), 106-112.
[115] Han, X., Song, J., Lian, L. H., Yao, Y. L., Shao, D. Y., Fan, Y., ... & Nan, J. X. (2018).
Ginsenoside 25-OCH3-PPD promotes activity of LXRs to ameliorate P2X7R-mediated NLRP3
inflammasome in the development of hepatic fibrosis. Journal of Agricultural and Food
Chemistry, 66(27), 7023-7035.
[116] Wang, F., Park, J. S., Ma, Y., Ma, H., Lee, Y. J., Lee, G. R., ... & Roh, Y. S. (2021). Ginseng
saponin enriched in Rh1 and Rg2 ameliorates nonalcoholic fatty liver disease by inhibiting inflammasome
activation. Nutrients, 13(3), 856.
[117] Han, G. C., Ko, S. K., Sung, J. H., & Chung, S. H. (2007). Compound K enhances insulin
secretion with beneficial metabolic effects in db/db mice. Journal of Agricultural and Food
Chemistry, 55(26), 10641-10648.
[118] Li, C. W., Deng, M. Z., Gao, Z. J., Dang, Y. Y., Zheng, G. D., Yang, X. J., ... & Wu, X. L. (2020).
Effects of compound K, a metabolite of ginsenosides, on memory and cognitive dysfunction in db/db
mice involve the inhibition of ER stress and the NLRP3 inflammasome pathway. Food & Function, 11(5),
4416-4427.
[119] Zhao, X. J., Yang, Y. Z., Zheng, Y. J., Wang, S. C., Gu, H. M., Pan, Y., ... & Kong, L. D. (2018).
Dataset on assessment of magnesium isoglycyrrhizinate injection for dairy diet and body weight in
fructose-induced metabolic syndrome of rats. Data in brief, 18, 69.
[120] Zheng, Y., Fan, J., Chen, H. W., & Liu, E. Q. (2019). Trametes orientalis polysaccharide
alleviates PM 2.5-induced lung injury in mice through its antioxidant and anti-inflammatory
activities. Food & function, 10(12), 8005-8015.
[121] Liang, J., Chen, S., Chen, J., Lin, J., Xiong, Q., Yang, Y., ... & Lai, X. (2018). Therapeutic roles
of polysaccharides from Dendrobium Officinaleon colitis and its underlying mechanisms. Carbohydrate
Polymers, 185, 159-168.
[122] Li, P., Xiao, N., Zeng, L., Xiao, J., Huang, J., Xu, Y., ... & Du, B. (2020). Structural
characteristics of a mannoglucan isolated from Chinese yam and its treatment effects against gut
microbiota dysbiosis and DSS-induced colitis in mice. Carbohydrate Polymers, 250, 116958.
[123] Chen, Y. S., Chen, Q. Z., Wang, Z. J., & Hua, C. (2019). Anti-inflammatory and hepatoprotective
effects of Ganoderma lucidum polysaccharides against carbon tetrachloride-induced liver injury in
Kunming mice. Pharmacology, 103(3-4), 143-150.
[124] Yang, R., Li, Y., Cai, J., Ji, J., Wang, Y., Zhang, W., ... & Chen, Y. (2020). Polysaccharides from
Armillariella tabescens mycelia ameliorate insulin resistance in type 2 diabetic mice. Food &
Function, 11(11), 9675-9685.
[125] Wu, C., Pan, L. L., Niu, W., Fang, X., Liang, W., Li, J., ... & Sun, J. (2019). Modulation of gut
microbiota by low methoxyl pectin attenuates type 1 diabetes in non-obese diabetic mice. Frontiers in
immunology, 10, 1733.
[126] Castro-Alves, V. C., Shiga, T. M., & do Nascimento, J. R. O. (2019). Polysaccharides from
chayote enhance lipid efflux and regulate NLRP3 inflammasome priming in macrophage-like THP-1 cells
exposed to cholesterol crystals. International Journal of Biological Macromolecules, 127, 502-510.
[127] Liu, Y., Wu, X., Wang, Y., Jin, W., & Guo, Y. (2020). The immunoenhancement effects of starfish
Asterias rollestoni polysaccharides in macrophages and cyclophosphamide-induced immunosuppression
mouse models. Food & Function, 11(12), 10700-10708.
[128] Wallert, M., Börmel, L., & Lorkowski, S. (2021). Inflammatory diseases and vitamin E—what
do we know and where do we go?. Molecular Nutrition & Food Research, 65(1), 2000097.
[129] Tapia, G., Silva, D., Romero, N., Pettinelli, P., Dossi, C. G., De Miguel, M., & González-Mañán,
D. (2018). Role of dietary α-and γ-tocopherol from Rosa mosqueta oil in the prevention of alterations
induced by high-fat diet in a murine model. Nutrition, 53, 1-8.
[130] Tapia, G., Silva, D., Romero, N., Pettinelli, P., Dossi, C. G., De Miguel, M., & González-Mañán,
D. (2018). Role of dietary α-and γ-tocopherol from Rosa mosqueta oil in the prevention of alterations
induced by high-fat diet in a murine model. Nutrition, 53, 1-8.
[131] Sheng, K., He, S., Sun, M., Zhang, G., Kong, X., Wang, J., & Wang, Y. (2020). Synbiotic
supplementation containing Bifidobacterium infantis and xylooligosaccharides alleviates dextran sulfate
sodium-induced ulcerative colitis. Food & Function, 11(5), 3964-3974.
[132] Suzuki, H., Yamazaki, T., Ohshio, K., Sugamata, M., Yoshikawa, M., Kanauchi, O., & Morita,
Y. (2020). A specific strain of lactic acid bacteria, lactobacillus paracasei, inhibits inflammasome
activation in vitro and prevents inflammation-related disorders. The Journal of Immunology, 205(3), 811-
821.
[133] Pan, X., Fang, X., Wang, F., Li, H., Niu, W., Liang, W., ... & Sun, J. (2019). Butyrate ameliorates
caerulein‐induced acute pancreatitis and associated intestinal injury by tissue‐specific
mechanisms. British journal of pharmacology, 176(23), 4446-4461.
[134] Chung, I. C., OuYang, C. N., Yuan, S. N., Lin, H. C., Huang, K. Y., Wu, P. S., ... & Chen, L. C.
(2019). Pretreatment with a heat-killed probiotic modulates the NLRP3 inflammasome and attenuates
colitis-associated colorectal cancer in mice. Nutrients, 11(3), 516.
[135] Loss, H., Aschenbach, J. R., Ebner, F., Tedin, K., & Lodemann, U. (2018). Effects of a
pathogenic ETEC strain and a probiotic Enterococcus faecium strain on the inflammasome response in
porcine dendritic cells. Veterinary immunology and immunopathology, 203, 78-87.
[136] Zou, Y. J., Xu, J. J., Wang, X., Zhu, Y. H., Wu, Q., & Wang, J. F. (2020). Lactobacillus johnsonii
l531 ameliorates Escherichia coli-induced cell damage via inhibiting NLRP3 inflammasome activity and
promoting ATG5/ATG16L1-mediated autophagy in porcine mammary epithelial cells. Veterinary
Sciences, 7(3), 112.