بررسی اثرات محلول‌پاشی نانو کلات آهن بر میزان متابولیت‌ها و ارزش غذایی گیاه کاهو (Lactuca sativa Linn.)

نویسندگان
1 دانشجوی دکتری گروه علوم گیاهی، زیست سلولی و مولکولی، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران
2 دانشیار گروه علوم گیاهی، زیست سلولی و مولکولی، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران
3 استاد گروه علوم گیاهی، زیست سلولی و مولکولی، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران
4 دانشیار گروه زیست، دانشکده علوم، دانشگاه شهید چمران، اهواز، ایران
5 استاد گروه علوم گیاهی، زیست سلولی و مولکولی، دانشکده علوم طبیعی، دانشگاه تبریز، تیریز، ایران
چکیده
در سال‌های اخیر بسیاری از پژوهش­ها در پی یافتن راهکارهای مناسبی جهت بهبود ارزش غذایی گیاهان و افزایش تولید محصولات بودند. به منظور افزایش عملکرد گیاهان و کاهش مصرف منابع غذایی حیوانی نیاز به استفاده از تکنیک‌های نوین زراعی است. یکی از مهم‌ترین تکنیک­ها جهت بهبود سیستم تغذیه­ای گیاهان و کاهش کاربرد کودهای شیمیایی استفاده از کودهای سنتتیک با بنیان آلی مانند نانو کلات آهن است. کودهای نانو به‌راحتی توسط گیاه جذب می‌شوند و کارایی بیشتری نسبت به کودهای شیمیایی معمولی دارند. بر همین اساس، این پژوهش به‌منظور ارزیابی تأثیر نانو کلات آهن بر ارزش غذایی و میزان جذب عناصر ریزمغذی توسط گیاه کاهو انجام شد. این پژوهش به‌صورت طرح کاملاً تصادفی در 3 تکرار در آزمایشگاه سیتوشیمی دانشگاه تبریز در سال 1401-1400 صورت گرفت. جهت بررسی اثرات نانوکلات آهن بر میزان پتانسیل گیاه کاهو به منظور جذب عناصر ریزمغذی از 3 سطح نانو کلات آهن (0، 5/0 و 1 گرم در لیتر) استفاده شد. در حضور نانو کلات آهن محتوی متابولیت­های ثانویه از جمله فنل کل، فلاونوئید و به علاوه ظرفیت آنتی­اکسیدانی کاهو نسبت به نمونه­ی شاهد افزایش معنی­داری داشت. همچنین، باتوجه‌به نتایج با افزایش غلظت نانو کلات آهن در میزان متابولیت­های اولیه مانند پروتئین کل، قند محلول، آمینواسیدهای آزاد گیاه کاهو نسبت به نمونه­ی شاهد افزایش مشاهده شد. با افزایش اعمال نانو کلات آهن به گیاه کاهو تجمع عناصر ریزمغذی از جمله آهن، کلسیم، روی، پتاسیم و فسفر در ریشه و اندام هوایی سیر صعودی نشان داد که این افزایش در تیمارهای نانو کلات آهن با غلظت بالاتر بیشتر بود. نتایج به‌دست‌آمده از این پژوهش گویای آن بود که نانو کلات آهن علاوه بر افزایش تولید متابولیت­های اولیه و ثانویه گیاهان می­تواند به‌عنوان کود مطمئنی جهت تأمین آهن و عناصر ریزمغذی برای آن­ها مورداستفاده قرار گیرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the effect of foliar application of nano chelated iron on the amounts of metabolites and nutritional value of lettuce (Lactuca sativa Linn.)

نویسندگان English

Roghayeh Heydari 1
Elham Mohajel Kazemi 2
Houshang Nosrati 3
Maryam Kolahi 4
Ali Movafeghi 5
1 PhD Student of the Department of Plant, Cell and Molecular biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
2 Associate Professor of the Department of Plant, Cell and Molecular biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
3 Professor of the Department of Plant, Cell and Molecular biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
4 Associate Professor of Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
5 Professor of the Department of Plant, Cell and Molecular biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
چکیده English

In recent years, many research studies have conducted to find ways to improve agricultural products and eliminate chemical fertilizer pollutants. In order to increase the yield of plants and reduce the consumption of animal food resources, it is necessary to use new agricultural techniques. Organic-based synthetic fertilizers such as nano chelated iron can contribute greatly to improving the nutritional system of plants and reducing the need for chemical fertilizers. Nano fertilizers are easily absorbed by plants and are more effective than conventional chemical fertilizers. On the basis of this information, this study was conducted to investigate the nutritional value of lettuce and its ability to absorb micronutrient elements. The study was conducted at Tabriz University in 1400-1401 as a completely randomized design in three repetitions. Three levels of nano chelated iron (0, 0.5 and 1 g/L) were used to investigate the effect of nano chelated iron on lettuce plant absorption of micronutrients. Nano chelated iron significantly increased the levels of secondary metabolites, including total phenols and flavonoids, as well as lettuce's antioxidant capacity as compared to control samples. Additionally, the results indicated that larger concentrations of nano chelated iron led to higher levels of total protein, soluble sugar, and free amino acids among lettuce plants compared to the control sample. It has been shown that micronutrients such as iron, calcium, zinc, potassium, and phosphorus accumulate in the roots and shoots of lettuce plants with the increased application of nano chelated iron to lettuce plants. This increase was greater in plants treated with higher concentrations of nano chelated iron. As a result of this study, the nano chelated iron was shown to increase plant primary and secondary metabolites, as well as provide iron and micronutrients for plants.

کلیدواژه‌ها English

Lettuce (Lactuca sativa Linn.)
Nano chelated iron
Micronutrients
Nutritional system
[1] Abdalla, M. A., Li, F., Wenzel-Storjohann, A., Sulieman, S., Tasdemir, D., & Mühling, K. H. 2021. Comparative metabolite profile, biological activity and overall quality of three lettuce (Lactuca sativa L., Asteraceae) cultivars in response to sulfur nutrition. Pharmaceutics, 13(5), 713. https://doi.org/10.3390/pharmaceutics13050713.‏
[2] Roa, J. 2023. Informal Food Markets in Quezon City and Pasay City, Philippines: A Rapid Assessment. Resilient Cities Initiative Research Report.‏ https://doi.org/10.4160/9789290606642.
[3] Baruah, S., & Dutta, J. 2009. Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environmental Chemistry Letters, 7, 191-204.‏ https://doi.org/10.1007/s10311-009-0228-8.
[4] Kochert, G. 1978. Carbohydrate determination by the phenol-sulfuric acid method. Handbook of phycological methods, Physiological and biochemical methods., 95.‏
[5] Cui, H. X., Sun, C. J., Liu, Q., Jiang, J., & Gu, W. 2010. Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In international conference on Nanoagri, Sao pedro, Brazil (pp. 28-33).‏
[6] Liu, X. M., Feng, Z. B., Zhang, F. D., Zhang, S. Q., & He, X. S. 2006. Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer. Agricultural Sciences in China, 5(9), 700-706.‏ https://doi.org/10.1016/S1671-2927(06)60113-2.
[7] Sharafaldin Shirazi, sh. and Fazli, F. 2012. The effect of microcalt and iron sulfate on yield and yield components of Thymus Celak daenesis. Bimonthly Scientific-Research Journal of Medicinal and Aromatic Plants of Iran, Vol.31, No.2, p. (In persian).
[8] Nasiri, Y. Zahtabsalmasi, S. Nasralehzadeh, p. Qasemigalazani, K. Najafi, N. A. and Javanmard, A. A. 2013. Evaluation of the effect of foliar spraying of iron and zinc sulfate on flower yield and concentration of nutrients in the aerial part of German chamomile, Journal of Agricultural Science and Sustainable Production. 23: 105-115. (In persian).
[9] Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3).‏ https://doi.org/10.38212/2224-6614.2748.
[10] Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. 2005. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food chemistry, 91(3), 571-577.‏ https://doi.org/10.1016/j.foodchem.2004.10.006.
[11] Miliauskas, G., Venskutonis, P. R., & Van Beek, T. A. 2004. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food chemistry, 85(2), 231-237.‏ https://doi.org/10.1016/j.foodchem.2003.05.007.
[12] Mm, B. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-254.‏
[13] Hwang, M. N., & Ederer, G. M. 1975. Rapid hippurate hydrolysis method for presumptive identification of group B streptococci. Journal of Clinical Microbiology, 1(1), 114-115.‏ https://doi.org/10.1128/jcm.1.1.114-115.1975.
[14] Bichi, A. M., & Ibrahim, S. R. 2018. Plant diversity and profile distribution of some available Micronutrients in selected soils of Kano State, Nigeria. Bayero Journal of Pure and Applied Sciences, 11(2), 20-31.‏ 10.4314/bajopas.v11i2.4.
[15] Pestana, M., Correia, P. J., Saavedra, T., Gama, F., Abadía, A., & de Varennes, A. 2012. Development and recovery of iron deficiency by iron resupply to roots or leaves of strawberry plants. Plant physiology and biochemistry, 53, 1-5.‏ https://doi.org/10.1016/j.plaphy.2012.01.001.
[16] Chen, P., Cao, Y., Bao, B., Zhang, L., & Ding, A. 2017. Antioxidant capacity of Typha angustifolia extracts and two active flavonoids. Pharmaceutical biology, 55(1), 1283-1288.‏ https://doi.org/10.1080/13880209.2017.1300818.
[17] Lee, K. H., Cha, M., & Lee, B. H. 2020. Neuroprotective effect of antioxidants in the brain. International journal of molecular sciences, 21(19), 7152.‏ 10.3390/ijms21197152.
[18] Schefer, S., Oest, M., & Rohn, S. 2021. Interactions between phenolic acids, proteins, and carbohydrates—Influence on dough and bread properties. Foods, 10(11), 2798.‏ https://doi.org/10.3390/foods10112798.
[19] de Silva, N. D. G., Cholewa, E., & Ryser, P. 2012. Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.). Journal of experimental botany, 63(16), 5957-5966.‏ https://doi.org/10.1093/jxb/ers241.
[20] Jalali, M., Ghanati, F., & Modarres-Sanavi, A. M. 2016. Effect of Fe3O4 nanoparticles and iron chelate on the antioxidant capacity and nutritional value of soil-cultivated maize (Zea mays) plants. Crop and Pasture Science, 67(6), 621-628.‏ https://doi.org/10.1071/CP15271.
[21] Manquián-Cerda, K., Cruces, E., Escudey, M., Zúñiga, G., & Calderón, R. 2018. Interactive effects of aluminum and cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets cultivated in vitro. Ecotoxicology and environmental safety, 150, 320-326.‏ https://doi.org/10.1016/j.ecoenv.2017.12.050.
[22] Sun, B., Jing, Y., Chen, K., Song, L., Chen, F., & Zhang, L. 2007. Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays). Journal of plant physiology, 164(5), 536-543.‏ https://doi.org/10.1016/j.jplph.2006.02.011.
[23] Tawfik, M. M., Mohamed, M. H., Sadak, M. S., & Thalooth, A. T. 2021. Iron oxide nanoparticles effect on growth, physiological traits and nutritional contents of Moringa oleifera grown in saline environment. Bulletin of the National Research Centre, 45(1), 1-9.‏ https://doi.org/10.1186/s42269-021-00624-9.
[24] Ahanger, M. A., & Agarwal, R. M. 2017. Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). Protoplasma, 254, 1471-1486.‏ https://doi.org/10.1007/s00709-016-1037-0.
[25] Khan, M. A., & Domashevskiy, A. V. 2021. Iron enhances the binding rates and translational efficiency of iron responsive elements (IREs) mRNA with initiation factor eIF4F. PLoS One, 16(4), e0250374.‏ 10.1371/journal.pone.0250374.
[26] He, Y., Dai, S., Dufresne, C. P., Zhu, N., Pang, Q., & Chen, S. 2013. Integrated proteomics and metabolomics of Arabidopsis acclimation to gene-dosage dependent perturbation of isopropylmalate dehydrogenases. PLoS One, 8(3), e57118.‏ https://doi.org/10.1371/journal.pone.0057118.
[27] Hamzah Saleem, M., Usman, K., Rizwan, M., Al Jabri, H., & Alsafran, M. 2022. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Frontiers in Plant Science, 13, 1033092.‏ 10.3389/fpls.2022.1033092.
[28] Benáková, M., Ahmadi, H., Dučaiová, Z., Tylová, E., Clemens, S., & Tůma, J. 2017. Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants. Environmental Science and Pollution Research, 24, 20705-20716.‏ https://doi.org/10.1007/s11356-017-9697-7.
[29] Nam HI, Shahzad Z, Dorone Y, Clowez S, Zhao K, Bouain N, Lay-Pruitt KS, Cho H, Rhee SY, Rouached H. 2021. Interdependent iron and phosphorus availability controls photosynthesis through retrograde signaling. Nat Commun, 12(1), 7211. 10.1038/s41467-021-27548-2.
[30] Johan, P. D., Ahmed, O. H., Omar, L., & Hasbullah, N. A. 2021. Phosphorus transformation in soils following co-application of charcoal and wood ash. Agronomy, 11(10), 2010.‏ https://doi.org/10.3390/agronomy11102010.
[31] Heydari, R., Kazemi, E. M., Kolahi, M., Movafeghi, A., & Nosrati, H. (2024). Modulation of cadmium induced oxidative stress pathways in lettuce (Lactuca sativa L.) by nano-chelated iron. Scientia Horticulturae, 337, 113530.‏ https://doi.org/10.1016/j.scienta.2024.113530.
[32] Clemens, S., Deinlein, U., Ahmadi, H., Höreth, S., & Uraguchi, S. 2013. Nicotianamine is a major player in plant Zn homeostasis. Biometals, 26, 623-632.‏ https://doi.org/10.1007/s10534-013-9643-1.
[33] Heydari, R., Kolahi, M., Mohajel Kazemi, E., Nosrati, H., & Movafeghi, A. (2024). The role of nano-chelated iron on anatomical and biochemical characteristics and concentration of mineral nutrients in lettuce (Lactuca sativa L.) under cadmium toxicity. Physiology and Molecular Biology of Plants, 30(8), 1383-1400.‏ doi: 10.1007/s12298-024-01490-1.