[1] Abdalla, M. A., Li, F., Wenzel-Storjohann, A., Sulieman, S., Tasdemir, D., & Mühling, K. H. 2021. Comparative metabolite profile, biological activity and overall quality of three lettuce (Lactuca sativa L., Asteraceae) cultivars in response to sulfur nutrition. Pharmaceutics, 13(5), 713. https://doi.org/10.3390/pharmaceutics13050713.
[2] Roa, J. 2023. Informal Food Markets in Quezon City and Pasay City, Philippines: A Rapid Assessment. Resilient Cities Initiative Research Report. https://doi.org/10.4160/9789290606642.
[3] Baruah, S., & Dutta, J. 2009. Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environmental Chemistry Letters, 7, 191-204. https://doi.org/10.1007/s10311-009-0228-8.
[4] Kochert, G. 1978. Carbohydrate determination by the phenol-sulfuric acid method. Handbook of phycological methods, Physiological and biochemical methods., 95.
[5] Cui, H. X., Sun, C. J., Liu, Q., Jiang, J., & Gu, W. 2010. Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In international conference on Nanoagri, Sao pedro, Brazil (pp. 28-33).
[6] Liu, X. M., Feng, Z. B., Zhang, F. D., Zhang, S. Q., & He, X. S. 2006. Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer. Agricultural Sciences in China, 5(9), 700-706. https://doi.org/10.1016/S1671-2927(06)60113-2.
[7] Sharafaldin Shirazi, sh. and Fazli, F. 2012. The effect of microcalt and iron sulfate on yield and yield components of Thymus Celak daenesis. Bimonthly Scientific-Research Journal of Medicinal and Aromatic Plants of Iran, Vol.31, No.2, p. (In persian).
[8] Nasiri, Y. Zahtabsalmasi, S. Nasralehzadeh, p. Qasemigalazani, K. Najafi, N. A. and Javanmard, A. A. 2013. Evaluation of the effect of foliar spraying of iron and zinc sulfate on flower yield and concentration of nutrients in the aerial part of German chamomile, Journal of Agricultural Science and Sustainable Production. 23: 105-115. (In persian).
[9] Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of food and drug analysis, 10(3). https://doi.org/10.38212/2224-6614.2748.
[10] Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. 2005. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food chemistry, 91(3), 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006.
[11] Miliauskas, G., Venskutonis, P. R., & Van Beek, T. A. 2004. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food chemistry, 85(2), 231-237. https://doi.org/10.1016/j.foodchem.2003.05.007.
[12] Mm, B. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 248-254.
[13] Hwang, M. N., & Ederer, G. M. 1975. Rapid hippurate hydrolysis method for presumptive identification of group B streptococci. Journal of Clinical Microbiology, 1(1), 114-115. https://doi.org/10.1128/jcm.1.1.114-115.1975.
[14] Bichi, A. M., & Ibrahim, S. R. 2018. Plant diversity and profile distribution of some available Micronutrients in selected soils of Kano State, Nigeria. Bayero Journal of Pure and Applied Sciences, 11(2), 20-31. 10.4314/bajopas.v11i2.4.
[15] Pestana, M., Correia, P. J., Saavedra, T., Gama, F., Abadía, A., & de Varennes, A. 2012. Development and recovery of iron deficiency by iron resupply to roots or leaves of strawberry plants. Plant physiology and biochemistry, 53, 1-5. https://doi.org/10.1016/j.plaphy.2012.01.001.
[16] Chen, P., Cao, Y., Bao, B., Zhang, L., & Ding, A. 2017. Antioxidant capacity of Typha angustifolia extracts and two active flavonoids. Pharmaceutical biology, 55(1), 1283-1288. https://doi.org/10.1080/13880209.2017.1300818.
[17] Lee, K. H., Cha, M., & Lee, B. H. 2020. Neuroprotective effect of antioxidants in the brain. International journal of molecular sciences, 21(19), 7152. 10.3390/ijms21197152.
[18] Schefer, S., Oest, M., & Rohn, S. 2021. Interactions between phenolic acids, proteins, and carbohydrates—Influence on dough and bread properties. Foods, 10(11), 2798. https://doi.org/10.3390/foods10112798.
[19] de Silva, N. D. G., Cholewa, E., & Ryser, P. 2012. Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.). Journal of experimental botany, 63(16), 5957-5966. https://doi.org/10.1093/jxb/ers241.
[20] Jalali, M., Ghanati, F., & Modarres-Sanavi, A. M. 2016. Effect of Fe3O4 nanoparticles and iron chelate on the antioxidant capacity and nutritional value of soil-cultivated maize (Zea mays) plants. Crop and Pasture Science, 67(6), 621-628. https://doi.org/10.1071/CP15271.
[21] Manquián-Cerda, K., Cruces, E., Escudey, M., Zúñiga, G., & Calderón, R. 2018. Interactive effects of aluminum and cadmium on phenolic compounds, antioxidant enzyme activity and oxidative stress in blueberry (Vaccinium corymbosum L.) plantlets cultivated in vitro. Ecotoxicology and environmental safety, 150, 320-326. https://doi.org/10.1016/j.ecoenv.2017.12.050.
[22] Sun, B., Jing, Y., Chen, K., Song, L., Chen, F., & Zhang, L. 2007. Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays). Journal of plant physiology, 164(5), 536-543. https://doi.org/10.1016/j.jplph.2006.02.011.
[23] Tawfik, M. M., Mohamed, M. H., Sadak, M. S., & Thalooth, A. T. 2021. Iron oxide nanoparticles effect on growth, physiological traits and nutritional contents of Moringa oleifera grown in saline environment. Bulletin of the National Research Centre, 45(1), 1-9. https://doi.org/10.1186/s42269-021-00624-9.
[24] Ahanger, M. A., & Agarwal, R. M. 2017. Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). Protoplasma, 254, 1471-1486. https://doi.org/10.1007/s00709-016-1037-0.
[25] Khan, M. A., & Domashevskiy, A. V. 2021. Iron enhances the binding rates and translational efficiency of iron responsive elements (IREs) mRNA with initiation factor eIF4F. PLoS One, 16(4), e0250374. 10.1371/journal.pone.0250374.
[26] He, Y., Dai, S., Dufresne, C. P., Zhu, N., Pang, Q., & Chen, S. 2013. Integrated proteomics and metabolomics of Arabidopsis acclimation to gene-dosage dependent perturbation of isopropylmalate dehydrogenases. PLoS One, 8(3), e57118. https://doi.org/10.1371/journal.pone.0057118.
[27] Hamzah Saleem, M., Usman, K., Rizwan, M., Al Jabri, H., & Alsafran, M. 2022. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Frontiers in Plant Science, 13, 1033092. 10.3389/fpls.2022.1033092.
[28] Benáková, M., Ahmadi, H., Dučaiová, Z., Tylová, E., Clemens, S., & Tůma, J. 2017. Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants. Environmental Science and Pollution Research, 24, 20705-20716. https://doi.org/10.1007/s11356-017-9697-7.
[29] Nam HI, Shahzad Z, Dorone Y, Clowez S, Zhao K, Bouain N, Lay-Pruitt KS, Cho H, Rhee SY, Rouached H. 2021. Interdependent iron and phosphorus availability controls photosynthesis through retrograde signaling. Nat Commun, 12(1), 7211. 10.1038/s41467-021-27548-2.
[30] Johan, P. D., Ahmed, O. H., Omar, L., & Hasbullah, N. A. 2021. Phosphorus transformation in soils following co-application of charcoal and wood ash. Agronomy, 11(10), 2010. https://doi.org/10.3390/agronomy11102010.
[31] Heydari, R., Kazemi, E. M., Kolahi, M., Movafeghi, A., & Nosrati, H. (2024). Modulation of cadmium induced oxidative stress pathways in lettuce (Lactuca sativa L.) by nano-chelated iron. Scientia Horticulturae, 337, 113530. https://doi.org/10.1016/j.scienta.2024.113530.
[32] Clemens, S., Deinlein, U., Ahmadi, H., Höreth, S., & Uraguchi, S. 2013. Nicotianamine is a major player in plant Zn homeostasis. Biometals, 26, 623-632. https://doi.org/10.1007/s10534-013-9643-1.
[33] Heydari, R., Kolahi, M., Mohajel Kazemi, E., Nosrati, H., & Movafeghi, A. (2024). The role of nano-chelated iron on anatomical and biochemical characteristics and concentration of mineral nutrients in lettuce (Lactuca sativa L.) under cadmium toxicity. Physiology and Molecular Biology of Plants, 30(8), 1383-1400. doi: 10.1007/s12298-024-01490-1.