تهیه امولسیون ساختار یافته آب در روغن (W/O) کم-اشباع بدون ترانس بر پایه روغن کانولا و اولئوژلاتورهای لیپیدی به عنوان جایگزین کره

نویسندگان
1 گروه علوم و صنایع غذایی، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.
2 استاد گروه علوم و صنایع غذایی، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران.
3 نایب رئیس هیات مدیره و مدیر عامل شرکت روغنکشی خرمشهر، تهران، ایران
چکیده


این مطالعه به بررسی تولید و ارزیابی امولسیون ‌های ساختار یافته آب در روغن (W/O) کم ‌اشباع و بدون اسید چرب ترانس بر پایه روغن کانولا و اولئوژلاتور های لیپیدی به عنوان جایگزین کره پرداخته است. این پژوهش تلاش نمود تا با بهره‌گیری از روغن کانولا، که دارای میزان کمتری اسید های چرب اشباع و میزان بیشتری اسید های چرب غیر اشباع نظیر اسید لینولنیک و اسید اولئیک است، امولسیون‌ هایی را ایجاد کند که از نظر ارزش تغذیه‌ای و عملکردی، مشابه یا برتر از نمونه ‌های تجاری کره باشند. در این پژوهش، از استئارین هسته پالم به عنوان جزء سخت و دو نوع امولسیفایر شامل گلیسرول مونو استئارات و سوربیتان مونو استئارات استفاده شده است. امولسیون ‌های تهیه شده تحت تأثیر متغیر های مختلفی مانند میزان استئارین هسته پالم، نوع امولسیفایر و نسبت روغن به آب قرار گرفتند و خصوصیات آن‌ ها از جمله ترکیب اسید های چرب، پایداری حرارتی، پایداری فیزیکی و خصوصیات بافتی و حسی مورد بررسی قرار گرفت. نتایج نشان داد که افزایش درصد استئارین هسته پالم منجر به افزایش سختی و پایداری حرارتی امولسیون‌ ها شده، در حالی که انتخاب نوع امولسیفایر تاثیر بسزایی بر روی پایداری فیزیکی و اکسایشی داشت. همچنین، نمونه‌ های حاوی سوربیتان مونو استئارات در مقایسه با گلیسرول مونو استئارات، پایداری فیزیکی بیشتری داشتند. نتایج حاصل از این مطالعه نشان می‌دهد که امولسیون ‌های ساختار یافته تولید شده با این روش می‌توانند به عنوان جایگزین مناسبی برای کره در کاربردهای غذایی مورد استفاده قرار گیرند، بدون اینکه کیفیت حسی و عملکردی محصول نهایی تحت تأثیر قرار گیرد. این تحقیق نشان‌ دهنده ظرفیت زیاد روغن‌ های گیاهی اصلاح شده در تولید محصولات غذایی سالم و با کیفیت مناسب است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Preparation of Structured Low-Saturated Water-in-Oil (W/O) Emulsion Based on Canola Oil and Lipid Oleogelators as Butter Substitute

نویسندگان English

Mohammad Razmpour 1
Jamshid Farmani 2
Jafar Mohammadzadeh Milani 2
Teimoor Mohammadi 3
1 Department of Food Industry Science and Engineering, Faculty of Agricultural Engineering, Sari University of Agricultural Sciences and Natural Resources, Iran
2 Full Professor of the Department of Food Industry Science and Engineering, Faculty of Agricultural Engineering, Sari University of Agricultural Sciences and Natural Resources, Iran
3 Vice Chairman of the Board of Directors and Managing Director of Khorramshahr Oil Company, Tehran, Iran.
چکیده English



This study investigates the production and evaluation of low-saturated, trans-fat-free water-in-oil (W/O) structured emulsions based on canola oil and lipidic oleogelators as a butter substitute. This research aims to create emulsions by utilizing canola oil, which is low in saturated fatty acids and high in unsaturated fatty acids such as linolenic and oleic acid, that are nutritionally and functionally comparable to or superior to commercial butter. In this study, palm kernel stearin used as the hard component, along with two types of emulsifiers: glycerol monostearate and sorbitan monostearate. Their properties were evaluated, including fatty acid composition, thermal stability, physical stability, and textural and sensory characteristics. The results showed that increasing the percentage of palm kernel stearin led to increasing for hardness and thermal stability of emulsions, while the choice of emulsifier type had a significant effect on physical and oxidative stability. Additionally, samples containing sorbitan monostearate showed higher physical stability compared to those with glycerol monostearate. The findings from this study suggests that the produced structured emulsions could serve as a suitable substitute for butter in the food applications without compromising the sensory and functional quality of the final product. This research highlights the high potential of modified vegetable oils for producing healthy and high-quality food products.




کلیدواژه‌ها English

Canola oil
Emulsion
Palm kernel
glycerol
Sorbitan
Oleogel
1 Panchal, B., & Bhandari, B. (2020). Butter and Dairy Fat Spreads. Dairy Fat Products and Functionality, 509–532. https://doi.org/10.1007/978-3-030-41661-4_21
2 Bobe, G., Hammond, E. G., Freeman, A. E., Lindberg, G. L., & Beitz, D. C. (2003). Texture of Butter from Cows with Different Milk Fatty Acid Compositions. Journal of Dairy Science, 86(10), 3122–3127. https://doi.org/10.3168/jds.s0022-0302(03)73913-7
3 Silva, T. J., Barrera-Arellano, D., & Ribeiro, A. P. B. (2021). Margarines: Historical approach, technological aspects, nutritional profile, and global trends. Food research international (Ottawa, Ont.), 147, 110486. https://doi.org/10.1016/j.foodres.2021.110486
4 Silva, T. J., Barrera‐Arellano, D., & Ribeiro, A. P. B. (2021). Oleogel‐based emulsions: Concepts, structuring agents, and applications in food. Journal of Food Science, 86(7), 2785–2801. Portico. https://doi.org/10.1111/1750-3841.15788
5 Ajmal, M., Nadeem, M., Batool, M., & Khan, I. T. (2018). Review Probable Ingredients for Trans Free Margarine with Omega-3 Fatty Acids. Biological Sciences - PJSIR, 61(3), 182–186. https://doi.org/10.52763/pjsir.biol.sci.61.3.2018.182.186
6 Šoronja-Simović, D., Šereš, Z., Nikolić, I., Šimurina, O., Djordjević, M., & Maravić, N. (2017). Challenges related to the application of high and low trans margarine in puff pastry production. Journal of Food Processing and Preservation, 41(6), e13265. Portico. https://doi.org/10.1111/jfpp.13265
7 Dassanayake, L. S. K., Kodali, D. R., & Ueno, S. (2011). Formation of oleogels based on edible lipid materials. Current Opinion in Colloid & Interface Science, 16(5), 432–439. https://doi.org/10.1016/j.cocis.2011.05.005
8 Ristanti, E. Y., Loppies, J. E., Ramlah, S., Wahyuni, & Ariyanti, M. (2018). Preparation of restructured palm oil for industrial specialty fat using beeswax-cocoa butter as oleogelator. AIP Conference Proceedings. https://doi.org/10.1063/1.5082417
9 Patel, A. R., & Dewettinck, K. (2016). Edible oil structuring: an overview and recent updates. Food & Function, 7(1), 20–29. https://doi.org/10.1039/c5fo01006c
10 Hwang, H., Singh, M., Bakota, E. L., Winkler‐Moser, J. K., Kim, S., & Liu, S. X. (2013). Margarine from Organogels of Plant Wax and Soybean Oil. Journal of the American Oil Chemists’ Society, 90(11), 1705–1712. Portico. https://doi.org/10.1007/s11746-013-2315-z
11 Yılmaz, E., & Öğütcü, M. (2015). Oleogels as spreadable fat and butter alternatives: sensory description and consumer perception. RSC Advances, 5(62), 50259–50267. https://doi.org/10.1039/c5ra06689a
12 Gaudino, N., Ghazani, S. M., Clark, S., Marangoni, A. G., & Acevedo, N. C. (2019). Development of lecithin and stearic acid based oleogels and oleogel emulsions for edible semisolid applications. Food Research International, 116, 79–89. https://doi.org/10.1016/j.foodres.2018.12.021
13 Silva, T. J., Fernandes, G. D., Bernardinelli, O. D., Silva, E. C. da R., Barrera-Arellano, D., & Ribeiro, A. P. B. (2021). Organogels in low-fat and high-fat margarine: A study of physical properties and shelf life. Food Research International, 140, 110036. https://doi.org/10.1016/j.foodres.2020.110036
14 Naeli, M. H., Milani, J. M., Farmani, J., & Zargaraan, A. (2022). Developing and optimizing low-saturated oleogel shortening based on ethyl cellulose and hydroxypropyl methyl cellulose biopolymers. Food Chemistry, 369, 130963. https://doi.org/10.1016/j.foodchem.2021.130963
15 Astiasarán, I., Abella, E., Gatta, G., & Ansorena, D. (2017). Margarines and Fast-Food French Fries: Low Content of trans Fatty Acids. Nutrients, 9(7), 662. https://doi.org/10.3390/nu9070662
16 García-Ortega, M. L., Toro-Vazquez, J. F., & Ghosh, S. (2021). Development and characterization of structured water-in-oil emulsions with ethyl cellulose oleogels. Food Research International, 150, 110763. https://doi.org/10.1016/j.foodres.2021.110763
17 AOCS 1996. Official Methods and Recommended Practices of the American Oil Chemists, Society, Champaign, AOCS Press.
18 Wang, X., Wang, S., Nan, Y., & Liu, G. (2021). Production of Margarines Rich in Unsaturated Fatty Acids Using Oxidative-stable Vitamin C-Loaded Oleogel. Journal of Oleo Science, 70(8), 1059–1068. https://doi.org/10.5650/jos.ess20264
19 Soddu, E., Rassu, G., Cossu, M., Giunchedi, P., Cerri, G., & Gavini, E. (2014). The effect of formulative parameters on the size and physical stability of SLN based on “green” components. Pharmaceutical Development and Technology, 21(1), 98–107. https://doi.org/10.3109/10837450.2014.971376
20 Dibildox-Alvarado, E., Rodrigues, J. N., Gioielli, L. A., Toro-Vazquez, J. F., & Marangoni, A. G. (2004). Effects of Crystalline Microstructure on Oil Migration in a Semisolid Fat Matrix. Crystal Growth & Design, 4(4), 731–736. https://doi.org/10.1021/cg049933n
21 Wang, P., Cui, N., Luo, J., Zhang, H., Guo, H., Wen, P., & Ren, F. (2016). Stable water-in-oil emulsions formulated with polyglycerol polyricinoleate and glucono-δ-lactone-induced casein gels. Food Hydrocolloids, 57, 217–220. https://doi.org/10.1016/j.foodhyd.2016.01.013
22 Lumor, S. E., Jones, K. C., Ashby, R., Strahan, G. D., Kim, B. H., Lee, G.-C., Shaw, J.-F., Kays, S. E., Chang, S.-W., Foglia, T. A., & Akoh, C. C. (2007). Synthesis and Characterization of Canola Oil−Stearic Acid-Based Trans-Free Structured Lipids for Possible Margarine Application. Journal of Agricultural and Food Chemistry, 55(26), 10692–10702. https://doi.org/10.1021/jf0710175
23 da Silva, T. L. T., Chaves, K. F., Fernandes, G. D., Rodrigues, J. B., Bolini, H. M. A., & Arellano, D. B. (2018). Sensory and Technological Evaluation of Margarines With Reduced Saturated Fatty Acid Contents Using Oleogel Technology. Journal of the American Oil Chemists’ Society, 95(6), 673–685. Portico. https://doi.org/10.1002/aocs.12074
24 Borriello, A., Masi, P., & Cavella, S. (2021). Novel pumpkin seed oil-based oleogels: development and physical characterization. LWT, 152, 112165. https://doi.org/10.1016/j.lwt.2021.112165
25 Hwang, H., & Winkler‐Moser, J. K. (2020). Properties of margarines prepared from soybean oil oleogels with mixtures of candelilla wax and beeswax. Journal of Food Science, 85(10), 3293–3302. Portico. https://doi.org/10.1111/1750-3841.15444
26 Pang, M., Shi, Z., Lei, Z., Ge, Y., Jiang, S., & Cao, L. (2020). Structure and thermal properties of beeswax-based oleogels with different types of vegetable oil. Grasas y Aceites, 71(4), 380. https://doi.org/10.3989/gya.0806192
27 Qiu, H., Qu, K., Zhang, H., & Eun, J.-B. (2023). Characterization and comparison of physical properties and in vitro simulated digestion of multi-component oleogels with different molecular weights prepared by the direct method. Food Hydrocolloids, 142, 108850. https://doi.org/10.1016/j.foodhyd.2023.108850
28 Yılmaz, E., & Öǧütcü, M. (2014). Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas y Aceites, 65(3), e040. https://doi.org/10.3989/gya.0349141
29 Luo, S.-Z., Hu, X.-F., Pan, L.-H., Zheng, Z., Zhao, Y.-Y., Cao, L.-L., Pang, M., Hou, Z.-G., & Jiang, S.-T. (2019). Preparation of camellia oil-based W/O emulsions stabilized by tea polyphenol palmitate: Structuring camellia oil as a potential solid fat replacer. Food Chemistry, 276, 209–217. https://doi.org/10.1016/j.foodchem.2018.09.161
30 Aktas, A. B., & Ozen, B. (2021). Chemical and physical properties of fats produced by chemical interesterification of tallow with vegetable oils. Grasas y Aceites, 72(3), e418. https://doi.org/10.3989/gya.0552201
31 Karabulut, I., Turan, S., & Ergin, G. (2004). Effects of chemical interesterification on solid fat content and slip melting point of fat/oil blends. European Food Research and Technology, 218(3), 224–229. https://doi.org/10.1007/s00217-003-0847-4
32 Bentayeb Ait Lounis, S., Mekimène, L., Mazi, D., Hamidchi, T., Hadjal, S., Boualit, S., & Benalia, M. (2018). Nutritional quality and safety of Algerian margarines: Fatty acid composition, oxidative stability and physicochemical properties. Mediterranean Journal of Nutrition and Metabolism, 11(3), 331–342. https://doi.org/10.3233/mnm-18208
33 Bascuas, S., Hernando, I., Moraga, G., & Quiles, A. (2019). Structure and stability of edible oleogels prepared with different unsaturated oils and hydrocolloids. International Journal of Food Science & Technology, 55(4), 1458–1467. Portico. https://doi.org/10.1111/ijfs.14469
34 Kupiec, M., Zbikowska, A., Marciniak-Lukasiak, K., & Kowalska, M. (2020). Rapeseed Oil in New Application: Assessment of Structure of Oleogels Based on their Physicochemical Properties and Microscopic Observations. Agriculture, 10(6), 211. https://doi.org/10.3390/agriculture10060211
35 Dadalı, C., & Elmacı, Y. (2019). Characterization of Volatile Release and Sensory Properties of Model Margarines by Changing Fat and Emulsifier Content. European Journal of Lipid Science and Technology, 121(6). Portico. https://doi.org/10.1002/ejlt.201900003
36 Nourbehesht, N., Shekarchizadeh, H., & Soltanizadeh, N. (2018). Investigation of stability, consistency, and oil oxidation of emulsion filled gel prepared by inulin and rice bran oil using ultrasonic radiation. Ultrasonics sonochemistry, 42, 585–593. https://doi.org/10.1016/j.ultsonch.2017.12.029
37 Putra, A. M., Syarifuddin, A., & Dirpan, A. (2020). Characterization pH, stability of emulsion, and viscosity canola oil (Brassicca napus L.) emulsion (O/W). IOP Conference Series: Earth and Environmental Science, 575(1), 012007. https://doi.org/10.1088/1755-1315/575/1/012007
38 Wolfer, T. L., Acevedo, N. C., Prusa, K. J., Sebranek, J. G., & Tarté, R. (2018). Replacement of pork fat in frankfurter-type sausages by soybean oil oleogels structured with rice bran wax. Meat science, 145, 352–362. https://doi.org/10.1016/j.meatsci.2018.07.012
39 Hwang, H.-S. (2020). A critical review on structures, health effects, oxidative stability, and sensory properties of oleogels. Biocatalysis and Agricultural Biotechnology, 26, 101657. https://doi.org/10.1016/j.bcab.2020.101657
40 Choi, K., Hwang, H., Jeong, S., Kim, S., & Lee, S. (2020). The thermal, rheological, and structural characterization of grapeseed oil oleogels structured with binary blends of oleogelator. Journal of Food Science, 85(10), 3432–3441. Portico. https://doi.org/10.1111/1750-3841.15442
41 Kim, M., Hwang, H.-S., Jeong, S., & Lee, S. (2022). Utilization of oleogels with binary oleogelator blends for filling creams low in saturated fat. LWT, 155, 112972. https://doi.org/10.1016/j.lwt.2021.112972
42 da Silva, T. L. T., & Danthine, S. (2022). Influence of sonocrystallization on lipid crystals multicomponent oleogels structuration and physical properties. Food Research International, 154, 110997. https://doi.org/10.1016/j.foodres.2022.110997
43 Sun, C., Gunasekaran, S., & Richards, M. P. (2007). Effect of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions. Food Hydrocolloids, 21(4), 555–564. https://doi.org/10.1016/j.foodhyd.2006.06.003
44 Mohamed, A. I. A., Sultan, A. S., Hussein, I. A., & Al-Muntasheri, G. A. (2017). Influence of Surfactant Structure on the Stability of Water-in-Oil Emulsions under High-Temperature High-Salinity Conditions. Journal of Chemistry, 1–11. https://doi.org/10.1155/2017/5471376
45 Szumała, P., & Luty, N. (2016). Effect of different crystalline structures on W/O and O/W/O wax emulsion stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 499, 131–140. https://doi.org/10.1016/j.colsurfa.2016.04.022
46 Paradiso, V. M., Giarnetti, M., Summo, C., Pasqualone, A., Minervini, F., & Caponio, F. (2015). Production and characterization of emulsion filled gels based on inulin and extra virgin olive oil. Food Hydrocolloids, 45, 30–40. https://doi.org/10.1016/j.foodhyd.2014.10.027
47 Nasirpour‐Tabrizi, P., Azadmard‐Damirchi, S., Hesari, J., Khakbaz Heshmati, M., & Savage, G. P. (2020). Production of a spreadable emulsion gel using flaxseed oil in a matrix of hydrocolloids. Journal of Food Processing and Preservation, 44(8). Portico. https://doi.org/10.1111/jfpp.14588