1 Panchal, B., & Bhandari, B. (2020). Butter and Dairy Fat Spreads. Dairy Fat Products and Functionality, 509–532. https://doi.org/10.1007/978-3-030-41661-4_21
2 Bobe, G., Hammond, E. G., Freeman, A. E., Lindberg, G. L., & Beitz, D. C. (2003). Texture of Butter from Cows with Different Milk Fatty Acid Compositions. Journal of Dairy Science, 86(10), 3122–3127. https://doi.org/10.3168/jds.s0022-0302(03)73913-7
3 Silva, T. J., Barrera-Arellano, D., & Ribeiro, A. P. B. (2021). Margarines: Historical approach, technological aspects, nutritional profile, and global trends. Food research international (Ottawa, Ont.), 147, 110486. https://doi.org/10.1016/j.foodres.2021.110486
4 Silva, T. J., Barrera‐Arellano, D., & Ribeiro, A. P. B. (2021). Oleogel‐based emulsions: Concepts, structuring agents, and applications in food. Journal of Food Science, 86(7), 2785–2801. Portico. https://doi.org/10.1111/1750-3841.15788
5 Ajmal, M., Nadeem, M., Batool, M., & Khan, I. T. (2018). Review Probable Ingredients for Trans Free Margarine with Omega-3 Fatty Acids. Biological Sciences - PJSIR, 61(3), 182–186. https://doi.org/10.52763/pjsir.biol.sci.61.3.2018.182.186
6 Šoronja-Simović, D., Šereš, Z., Nikolić, I., Šimurina, O., Djordjević, M., & Maravić, N. (2017). Challenges related to the application of high and low trans margarine in puff pastry production. Journal of Food Processing and Preservation, 41(6), e13265. Portico. https://doi.org/10.1111/jfpp.13265
7 Dassanayake, L. S. K., Kodali, D. R., & Ueno, S. (2011). Formation of oleogels based on edible lipid materials. Current Opinion in Colloid & Interface Science, 16(5), 432–439. https://doi.org/10.1016/j.cocis.2011.05.005
8 Ristanti, E. Y., Loppies, J. E., Ramlah, S., Wahyuni, & Ariyanti, M. (2018). Preparation of restructured palm oil for industrial specialty fat using beeswax-cocoa butter as oleogelator. AIP Conference Proceedings. https://doi.org/10.1063/1.5082417
9 Patel, A. R., & Dewettinck, K. (2016). Edible oil structuring: an overview and recent updates. Food & Function, 7(1), 20–29. https://doi.org/10.1039/c5fo01006c
10 Hwang, H., Singh, M., Bakota, E. L., Winkler‐Moser, J. K., Kim, S., & Liu, S. X. (2013). Margarine from Organogels of Plant Wax and Soybean Oil. Journal of the American Oil Chemists’ Society, 90(11), 1705–1712. Portico. https://doi.org/10.1007/s11746-013-2315-z
11 Yılmaz, E., & Öğütcü, M. (2015). Oleogels as spreadable fat and butter alternatives: sensory description and consumer perception. RSC Advances, 5(62), 50259–50267. https://doi.org/10.1039/c5ra06689a
12 Gaudino, N., Ghazani, S. M., Clark, S., Marangoni, A. G., & Acevedo, N. C. (2019). Development of lecithin and stearic acid based oleogels and oleogel emulsions for edible semisolid applications. Food Research International, 116, 79–89. https://doi.org/10.1016/j.foodres.2018.12.021
13 Silva, T. J., Fernandes, G. D., Bernardinelli, O. D., Silva, E. C. da R., Barrera-Arellano, D., & Ribeiro, A. P. B. (2021). Organogels in low-fat and high-fat margarine: A study of physical properties and shelf life. Food Research International, 140, 110036. https://doi.org/10.1016/j.foodres.2020.110036
14 Naeli, M. H., Milani, J. M., Farmani, J., & Zargaraan, A. (2022). Developing and optimizing low-saturated oleogel shortening based on ethyl cellulose and hydroxypropyl methyl cellulose biopolymers. Food Chemistry, 369, 130963. https://doi.org/10.1016/j.foodchem.2021.130963
15 Astiasarán, I., Abella, E., Gatta, G., & Ansorena, D. (2017). Margarines and Fast-Food French Fries: Low Content of trans Fatty Acids. Nutrients, 9(7), 662. https://doi.org/10.3390/nu9070662
16 García-Ortega, M. L., Toro-Vazquez, J. F., & Ghosh, S. (2021). Development and characterization of structured water-in-oil emulsions with ethyl cellulose oleogels. Food Research International, 150, 110763. https://doi.org/10.1016/j.foodres.2021.110763
17 AOCS 1996. Official Methods and Recommended Practices of the American Oil Chemists, Society, Champaign, AOCS Press.
18 Wang, X., Wang, S., Nan, Y., & Liu, G. (2021). Production of Margarines Rich in Unsaturated Fatty Acids Using Oxidative-stable Vitamin C-Loaded Oleogel. Journal of Oleo Science, 70(8), 1059–1068. https://doi.org/10.5650/jos.ess20264
19 Soddu, E., Rassu, G., Cossu, M., Giunchedi, P., Cerri, G., & Gavini, E. (2014). The effect of formulative parameters on the size and physical stability of SLN based on “green” components. Pharmaceutical Development and Technology, 21(1), 98–107. https://doi.org/10.3109/10837450.2014.971376
20 Dibildox-Alvarado, E., Rodrigues, J. N., Gioielli, L. A., Toro-Vazquez, J. F., & Marangoni, A. G. (2004). Effects of Crystalline Microstructure on Oil Migration in a Semisolid Fat Matrix. Crystal Growth & Design, 4(4), 731–736. https://doi.org/10.1021/cg049933n
21 Wang, P., Cui, N., Luo, J., Zhang, H., Guo, H., Wen, P., & Ren, F. (2016). Stable water-in-oil emulsions formulated with polyglycerol polyricinoleate and glucono-δ-lactone-induced casein gels. Food Hydrocolloids, 57, 217–220. https://doi.org/10.1016/j.foodhyd.2016.01.013
22 Lumor, S. E., Jones, K. C., Ashby, R., Strahan, G. D., Kim, B. H., Lee, G.-C., Shaw, J.-F., Kays, S. E., Chang, S.-W., Foglia, T. A., & Akoh, C. C. (2007). Synthesis and Characterization of Canola Oil−Stearic Acid-Based Trans-Free Structured Lipids for Possible Margarine Application. Journal of Agricultural and Food Chemistry, 55(26), 10692–10702. https://doi.org/10.1021/jf0710175
23 da Silva, T. L. T., Chaves, K. F., Fernandes, G. D., Rodrigues, J. B., Bolini, H. M. A., & Arellano, D. B. (2018). Sensory and Technological Evaluation of Margarines With Reduced Saturated Fatty Acid Contents Using Oleogel Technology. Journal of the American Oil Chemists’ Society, 95(6), 673–685. Portico. https://doi.org/10.1002/aocs.12074
24 Borriello, A., Masi, P., & Cavella, S. (2021). Novel pumpkin seed oil-based oleogels: development and physical characterization. LWT, 152, 112165. https://doi.org/10.1016/j.lwt.2021.112165
25 Hwang, H., & Winkler‐Moser, J. K. (2020). Properties of margarines prepared from soybean oil oleogels with mixtures of candelilla wax and beeswax. Journal of Food Science, 85(10), 3293–3302. Portico. https://doi.org/10.1111/1750-3841.15444
26 Pang, M., Shi, Z., Lei, Z., Ge, Y., Jiang, S., & Cao, L. (2020). Structure and thermal properties of beeswax-based oleogels with different types of vegetable oil. Grasas y Aceites, 71(4), 380. https://doi.org/10.3989/gya.0806192
27 Qiu, H., Qu, K., Zhang, H., & Eun, J.-B. (2023). Characterization and comparison of physical properties and in vitro simulated digestion of multi-component oleogels with different molecular weights prepared by the direct method. Food Hydrocolloids, 142, 108850. https://doi.org/10.1016/j.foodhyd.2023.108850
28 Yılmaz, E., & Öǧütcü, M. (2014). Oleogels of virgin olive oil with carnauba wax and monoglyceride as spreadable products. Grasas y Aceites, 65(3), e040. https://doi.org/10.3989/gya.0349141
29 Luo, S.-Z., Hu, X.-F., Pan, L.-H., Zheng, Z., Zhao, Y.-Y., Cao, L.-L., Pang, M., Hou, Z.-G., & Jiang, S.-T. (2019). Preparation of camellia oil-based W/O emulsions stabilized by tea polyphenol palmitate: Structuring camellia oil as a potential solid fat replacer. Food Chemistry, 276, 209–217. https://doi.org/10.1016/j.foodchem.2018.09.161
30 Aktas, A. B., & Ozen, B. (2021). Chemical and physical properties of fats produced by chemical interesterification of tallow with vegetable oils. Grasas y Aceites, 72(3), e418. https://doi.org/10.3989/gya.0552201
31 Karabulut, I., Turan, S., & Ergin, G. (2004). Effects of chemical interesterification on solid fat content and slip melting point of fat/oil blends. European Food Research and Technology, 218(3), 224–229. https://doi.org/10.1007/s00217-003-0847-4
32 Bentayeb Ait Lounis, S., Mekimène, L., Mazi, D., Hamidchi, T., Hadjal, S., Boualit, S., & Benalia, M. (2018). Nutritional quality and safety of Algerian margarines: Fatty acid composition, oxidative stability and physicochemical properties. Mediterranean Journal of Nutrition and Metabolism, 11(3), 331–342. https://doi.org/10.3233/mnm-18208
33 Bascuas, S., Hernando, I., Moraga, G., & Quiles, A. (2019). Structure and stability of edible oleogels prepared with different unsaturated oils and hydrocolloids. International Journal of Food Science & Technology, 55(4), 1458–1467. Portico. https://doi.org/10.1111/ijfs.14469
34 Kupiec, M., Zbikowska, A., Marciniak-Lukasiak, K., & Kowalska, M. (2020). Rapeseed Oil in New Application: Assessment of Structure of Oleogels Based on their Physicochemical Properties and Microscopic Observations. Agriculture, 10(6), 211. https://doi.org/10.3390/agriculture10060211
35 Dadalı, C., & Elmacı, Y. (2019). Characterization of Volatile Release and Sensory Properties of Model Margarines by Changing Fat and Emulsifier Content. European Journal of Lipid Science and Technology, 121(6). Portico. https://doi.org/10.1002/ejlt.201900003
36 Nourbehesht, N., Shekarchizadeh, H., & Soltanizadeh, N. (2018). Investigation of stability, consistency, and oil oxidation of emulsion filled gel prepared by inulin and rice bran oil using ultrasonic radiation. Ultrasonics sonochemistry, 42, 585–593. https://doi.org/10.1016/j.ultsonch.2017.12.029
37 Putra, A. M., Syarifuddin, A., & Dirpan, A. (2020). Characterization pH, stability of emulsion, and viscosity canola oil (Brassicca napus L.) emulsion (O/W). IOP Conference Series: Earth and Environmental Science, 575(1), 012007. https://doi.org/10.1088/1755-1315/575/1/012007
38 Wolfer, T. L., Acevedo, N. C., Prusa, K. J., Sebranek, J. G., & Tarté, R. (2018). Replacement of pork fat in frankfurter-type sausages by soybean oil oleogels structured with rice bran wax. Meat science, 145, 352–362. https://doi.org/10.1016/j.meatsci.2018.07.012
39 Hwang, H.-S. (2020). A critical review on structures, health effects, oxidative stability, and sensory properties of oleogels. Biocatalysis and Agricultural Biotechnology, 26, 101657. https://doi.org/10.1016/j.bcab.2020.101657
40 Choi, K., Hwang, H., Jeong, S., Kim, S., & Lee, S. (2020). The thermal, rheological, and structural characterization of grapeseed oil oleogels structured with binary blends of oleogelator. Journal of Food Science, 85(10), 3432–3441. Portico. https://doi.org/10.1111/1750-3841.15442
41 Kim, M., Hwang, H.-S., Jeong, S., & Lee, S. (2022). Utilization of oleogels with binary oleogelator blends for filling creams low in saturated fat. LWT, 155, 112972. https://doi.org/10.1016/j.lwt.2021.112972
42 da Silva, T. L. T., & Danthine, S. (2022). Influence of sonocrystallization on lipid crystals multicomponent oleogels structuration and physical properties. Food Research International, 154, 110997. https://doi.org/10.1016/j.foodres.2022.110997
43 Sun, C., Gunasekaran, S., & Richards, M. P. (2007). Effect of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions. Food Hydrocolloids, 21(4), 555–564. https://doi.org/10.1016/j.foodhyd.2006.06.003
44 Mohamed, A. I. A., Sultan, A. S., Hussein, I. A., & Al-Muntasheri, G. A. (2017). Influence of Surfactant Structure on the Stability of Water-in-Oil Emulsions under High-Temperature High-Salinity Conditions. Journal of Chemistry, 1–11. https://doi.org/10.1155/2017/5471376
45 Szumała, P., & Luty, N. (2016). Effect of different crystalline structures on W/O and O/W/O wax emulsion stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 499, 131–140. https://doi.org/10.1016/j.colsurfa.2016.04.022
46 Paradiso, V. M., Giarnetti, M., Summo, C., Pasqualone, A., Minervini, F., & Caponio, F. (2015). Production and characterization of emulsion filled gels based on inulin and extra virgin olive oil. Food Hydrocolloids, 45, 30–40. https://doi.org/10.1016/j.foodhyd.2014.10.027
47 Nasirpour‐Tabrizi, P., Azadmard‐Damirchi, S., Hesari, J., Khakbaz Heshmati, M., & Savage, G. P. (2020). Production of a spreadable emulsion gel using flaxseed oil in a matrix of hydrocolloids. Journal of Food Processing and Preservation, 44(8). Portico. https://doi.org/10.1111/jfpp.14588