اثر سرعت اولتراتوراکس بر خصوصیات اسانس پوست گریپ فروت ریزپوشانی شده با صمغ آلژینات

نویسندگان
گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران
چکیده
در این پژوهش تاثیر سرعت­های مختلف هموژنیزاسیون (10000، 15000 و 20000 دور بر دقیقه) بر ویژگی­های ساختاری، رئولوژیکی و خاصیت آنتی اکسیدانی اسانس پوست گریپ فروت نانوریز پوشانی شده در دیواره صمغ آلژینات مورد بررسی قرار گرفت. افزایش سرعت هموژنیزاسیون منجر به کاهش اندازه ذرات (از 0/264 تا 9/226 نانومتر) و شاخص پراکندگی ذرات نانوامولسیون (از 32/0تا 19/0) شد. تمام نانوامولسیون­ها پتانسیل زتای منفی (6/23- تا 65/21- میلی ولت) داشتند. راندمان نانوریزپوشانی اسانس با افزایش سرعت هموژنیزاسیون از 92/83 تا 76/78 درصد کاهش یافت. نانوامولسیون اسانس در دمای C4º به مدت 5 روز پایداری کامل داشت. در دمای C25º با گذشت زمان، پایداری نانوامولسیون کاهش یافت و بیشترین پایداری مربوط به نانوامولسیون­های تهیه شده با سرعت 15000 دور بر دقیقه بود که پتانسیل زتای کوچکتری داشت. نتایج مربوط به طیف بینی فروسرخ تبدیل فوریه و گرماسنجی روبشی تفاضلی نشان دهنده احاطه شدن اسانس توسط آلژینات بود. نانوامولسیون­های تولید شده دارای فعالیت آنتی اکسیدانی بودند و با افزایش غلظت نانوامولسیون میزان مهار رادیکال آزاد DPPH افزایش یافت. بیشترین فعالیت آنتی اکسیدانی مربوط به نانوامولسیون تهیه شده در سرعت 10000 دور بر دقیقه بود. تمامی نانوامولسیون­ها رفتار رقیق شونده با برش نشان دادند. مدل­های هرشل بالکلی و پاورلا دارای R2 بالاتری نسبت به سایر مدل­های برازش شده بودند. هموژنیزاسیون بر روی مقدار kp و kH تقریبا بی اثر بوده است. نتایج این تحقیق استفاده از سرعت 15000 دور بر دقیقه را برای تولید نانوامولسیون اسانس پوست گریپ فروت در دیواره صمغ آلژینات مناسب معرفی می­نماید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of ultraturrax speed on properties of grapefruit peel essential oil microencapsulated with alginate gum

نویسندگان English

Samaneh Mohammad Kheshtchin
Reza Farahmandfar
Jamshid Farmani
Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Iran
چکیده English

In this study, the effect of different homogenization speed (10,000, 15,000 and 20,000 rpm) on the structural, rheological and antioxidant properties of nanoencapsulated grapefruit peel essential oil coated in alginate gum wall was investigated. Increasing the homogenization speed led to a decrease in particle size (from 264.0 to 226.9 nm) and PDI index (from 0.32 to 0.19) of nanoemulsion. All nanoemulsions had negative zeta potential (-23.6 to -21.65 mV). The nanoencapsulation efficiency of the essential oil decreased from 83.92 to 78.76% with increasing the speed of homogenization. Nanoemulsion of essential oil at 4 ° C had full stability (100%) for 5 days, while at 25 ° C over time, the stability of the nanoemulsion decreased and the highest stability was related to the prepared nanoemulsions at 15000 rpm because of a smaller zeta potential. The results of Fourier transform infrared spectroscopy and differential scanning calorimetry showed that the essential oil was encapsulated by alginate. The produced nanoemulsions had antioxidant activity and with increasing the concentration of nanoemulsions, the speed of DPPH free radical scavenging increased. The highest antioxidant activity was related to the prepared nanoemulsion at 10,000 rpm. All nanoemulsions showed pseudoplastic (shear thinning) behavior. Herschel–Bulkley and Power law models had higher R2 than other fitted models. Homogenization had almost no effect on kp and kH. The results of this study introduce the use of 15,000 rpm to produce a nanoemulsion of grapefruit peel essential oil in the alginate gum wall.


کلیدواژه‌ها English

Homogenization
Microencapsulation
Alginate gum
Grapefruit peel essential oil
Rheology
[1] Deng, W., Liu, K., Cao, S., Sun, J., Zhong, B., & Chun, J. (2020). Chemical composition, antimicrobial, antioxidant, and antiproliferative properties of grapefruit essential oil prepared by molecular distillation. Molecules, 25(1), 217.
[2] Sahay, S. (2015). A review on pharmacological uses of essential oil. Int. J. Curr. Pharm. Rev. Res, 6, 71-79.
[3] Okunowo, W. O., Oyedeji, O., Afolabi, L. O., & Matanmi, E. (2013). Essential oil of grape fruit (Citrus paradisi) peels and its antimicrobial activities.
[4] Kavoosi, G., Derakhshan, M., Salehi, M., & Rahmati, L. (2018). Microencapsulation of zataria essential oil in agar, alginate and carrageenan. Innovative Food Science & Emerging Technologies, 45, 418-425.
[5] Bozkurt, T., Gülnaz, O., & Kaçar, Y. A. (2017). Chemical composition of the essential oils from some citrus species and evaluation of the antimicrobial activity. Journal of Environmental Science, Toxicology and Food Technology, 11(10), 29-33.
[6] Đorđević, V., Balanč, B., Belščak-Cvitanović, A., Lević, S., Trifković, K., Kalušević, A. Nedović, V. (2015). Trends in encapsulation technologies for delivery of food bioactive compounds. Food Engineering Reviews, 7(4), 452-490.
[7] Choukaife, H., Doolaanea, A. A., & Alfatama, M. (2020). Alginate nanoformulation: Influence of process and selected variables. Pharmaceuticals, 13(11), 335.
[8] Dehghan, B., Esmaeilzadeh Kenari, R., & Raftani Amiri, Z. (2020). Nano‐encapsulation of orange peel essential oil in native gums (Lepidium sativum and Lepidium perfoliatum): Improving oxidative stability of soybean oil. Journal of Food Processing and Preservation, 44(11), e14889.
[9] Radünz, M., da Trindade, M. L. M., Camargo, T. M., Radünz, A. L., Borges, C. D., Gandra, E. A., & Helbig, E. (2019). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chemistry, 276, 180-186.
[10] Granata, G., Stracquadanio, S., Leonardi, M., Napoli, E., Consoli, G. M. L., Cafiso, V., . . . Geraci, C. (2018). Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chemistry, 269, 286-292.
[11] Raeisi, S., Ojagh, S. M., Quek, S. Y., Pourashouri, P., & Salaün, F. (2019). Nano-encapsulation of fish oil and garlic essential oil by a novel composition of wall material: Persian gum-chitosan. LWT, 116, 108494.
[12] Razavi, R., Kenari, R. E., Farmani, J., & Jahanshahi, M. (2020). Fabrication of zein/alginate delivery system for nanofood model based on pumpkin. International journal of biological macromolecules, 165, 3123-3134.
[13] Naji-Tabasi, S., Razavi, S. M. A., & Mehditabar, H. (2017). Fabrication of basil seed gum nanoparticles as a novel oral delivery system of glutathione. Carbohydrate Polymers, 157, 1703-1713.
[14] Himed, L., Merniz, S., Monteagudo-Olivan, R., Barkat, M., & Coronas, J. (2019). Antioxidant activity of the essential oil of citrus limon before and after its encapsulation in amorphous SiO2. Scientific African, 6, e00181.
[15] Li, W., Wang, Y., Li, J., Jiao, Y., & Chen, J. (2019). Synergistic and competitive effects of monoglycerides on the encapsulation and interfacial shear rheological behavior of soy proteins. Food Hydrocolloids, 89, 631-636.
[16] Benavides, S., Cortés, P., Parada, J., & Franco, W. (2016). Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chemistry, 204, 77-83.
[17] Carmona, P. A., Tonon, R. V., da Cunha, R. L., & Hubinger, M. D. (2013). Influence of emulsion properties on the microencapsulation of orange essential oil by spray drying. Journal of Colloid Science and Biotechnology, 2(2), 130-139.
[18] Firoozi, M., Rezapour‐Jahani, S., Shahvegharasl, Z., & Anarjan, N. (2020). Ginger essential oil nanoemulsions: Preparation and physicochemical characterization and antibacterial activities evaluation. Journal of Food Process Engineering, 43(8), e13434.
[19] Ruiz Márquez, D., Partal López, P., Franco Gómez, J. M., & Gallegos Montes, C. (2010). Emulsiones alimentarias aceite-en-agua estabilizadas con proteínas de atún.
[20] Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2013). Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocolloids, 30(1), 401-407.
[21] Soliman, E. A., El-Moghazy, A. Y., El-Din, M. M., & Massoud, M. A. (2013). Microencapsulation of essential oils within alginate: formulation and in vitro evaluation of antifungal activity.
[22] Yilmaztekin, M., Lević, S., Kalušević, A., Cam, M., Bugarski, B., Rakić, V. Nedović, V. (2019). Characterisation of peppermint (Mentha piperita L.) essential oil encapsulates. Journal of microencapsulation, 36(2), 109-119.
[23] Shinde, U., & Nagarsenker, M. (2011). Microencapsulation of eugenol by gelatin-sodium alginate complex coacervation. Indian journal of pharmaceutical sciences, 73(3), 311.
[24] Esmaeilzadeh Kenari, R., & Razavi, R. (2022). Phenolic profile and antioxidant activity of free/bound phenolic compounds of sesame and properties of encapsulated nanoparticles in different wall materials. Food science & nutrition, 10(2), 525-535.
[25] Garcia, L. C., Tonon, R. V., & Hubinger, M. D. (2012). Effect of homogenization pressure and oil load on the emulsion properties and the oil retention of microencapsulated basil essential oil (Ocimum basilicum L.). Drying Technology, 30(13), 1413-1421.
[26] Purwanti, N., Zehn, A. S., Pusfitasari, E. D., Khalid, N., Febrianto, E. Y., Mardjan, S. S. Kobayashi, I. (2018). Emulsion stability of clove oil in chitosan and sodium alginate matrix. International Journal of Food Properties, 21(1), 566-581.
[27] Manaila, E., Berechet, M. D., Stelescu, M. D., Craciun, G., Mihaiescu, D. E., Purcareanu, B. Radu, M. (2016). Comparation between chemical compositions of some essential oils obtained by hydrodistillation from citrus peels. Revista de Chimie, 67, 106.
[28] Krekora, M., Markiewicz, K. H., Wilczewska, A. Z., & Nawrocka, A. (2023). Raman and thermal (TGA and DSC) studies of gluten proteins supplemented with flavonoids and their glycosides. Journal of Cereal Science, 103672.
[29] Razmkhah, S., Mohammadifar, M. A., Razavi, S. M. A., & Ale, M. T. (2016). Purification of cress seed (Lepidium sativum) gum: Physicochemical characterization and functional properties. Carbohydrate Polymers, 141, 166-174.
[30] Mahmoud, K. F., Ibrahim, M. A., Mervat, E. D., Shaaban, H. A., Kamil, M. M., & Hegazy, N. A. (2016). Nano-encapsulation efficiency of lemon and orange peels extracts on cake shelf life. American Journal of Food Technology, 11(3), 63-75.
[31] Laurienzo, P., Malinconico, M., Motta, A., & Vicinanza, A. (2005). Synthesis and characterization of a novel alginate–poly (ethylene glycol) graft copolymer. Carbohydrate Polymers, 62(3), 274-282.
[32] Ahmed, S., Rattanpal, H., Gul, K., Dar, R. A., & Sharma, A. (2019). Chemical composition, antioxidant activity and GC-MS analysis of juice and peel oil of grapefruit varieties cultivated in India. Journal of Integrative Agriculture, 18(7), 1634-1642.
[33] Mohammad Kheshtchin, S., Farahmandfar, R., & Farmani, J. (2022). Effect of homogenization on encapsulation of grapefruit (Citrus paradisi) peel essential oil with basil seed gum. Innovative Food Technologies, 9(3), 223-238 [In Persian].
[34] Wei, A., & Shibamoto, T. (2007). Antioxidant activities and volatile constituents of various essential oils. Journal of Agricultural and Food Chemistry, 55(5), 1737-1742.
[35] Mimica-Dukic, N., Bozin, B., Sokovic, M., & Simin, N. (2004). Antimicrobial and antioxidant activities of Melissa officinalis L.(Lamiaceae) essential oil. Journal of Agricultural and Food Chemistry, 52(9), 2485-2489.
[36] Kelen, M., & Tepe, B. (2008). Chemical composition, antioxidant and antimicrobial properties of the essential oils of three Salvia species from Turkish flora. Bioresource technology, 99(10), 4096-4104.
[37] Floury, J., Desrumaux, A., & Lardières, J. (2000). Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innovative Food Science & Emerging Technologies, 1(2), 127-134.
[38] Cofelice, M., Cinelli, G., Lopez, F., Di Renzo, T., Coppola, R., & Reale, A. (2021). Alginate-assisted lemongrass (Cymbopogon nardus) essential oil dispersions for antifungal activity. Foods, 10(7), 1528.
[39] Da Silva Campelo, M., Melo, E. O., Arrais, S. P., do Nascimento, F. B. S. A., Gramosa, N. V., de Aguiar Soares, S. Ricardo, N. M. P. S. (2021). Clove essential oil encapsulated on nanocarrier based on polysaccharide: A strategy for the treatment of vaginal candidiasis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610, 125732.