1. Bhaskar, N., and Mahendrakar, N. S. Protein hydrolysate from visceral waste proteins of Catla (Catla catla): Optimization of hydrolysis conditions for a commercial neutral protease. Bioresource Technology. 2008; 99(10), 4105-4111.
2. Kim, J.-A. and Kim, S.-K. Bioactive peptides from marine sources as potential anti-inflammatory therapeutics. Current Protein and Peptide Science. 2013; 14(3), 177-182.
3. Ahn, C.B., Lee, K.H. and Je, J.Y. Enzymatic production of bioactive protein hydrolysates from tuna liver: effects of enzymes and molecular weight on bioactivity. International Journal of Food Science and Technology. 2010; 45(3), 562-568.
4. Ovissipour, M., Benjakul, S., Safari, R. and Motamedzadegan, A. Fish protein hydrolysates production from yellowfin tuna (Thunnus albacares) head using Alcalase and Protamex. International Aquatic Research. 2010; 2, 87-95.
5. Diniz A.M. and Martin A.M. Optimization of nitrogen recovery in the enzymatic hydrolysis of dogfish (Squalus acanthias) protein: Composition of the hydrolysates. International Journal of Food Science and Nutrition. 1997; 48, 191– 200.
6. Elavarasan, K., Naveen Kumar, V. and Shamasundar, B.A. Antioxidant and functional properties of fish protein hydrolysates from fresh water carp (Catla catla) as influenced by the nature of enzyme. Journal of Food Processing and Preservation. 2014; 38(3), 1207-1214.
7. Klompong, V., Benjakul, S., Kantachote, D. and Shahidi, F. Antioxidant activity and functional properties of protein hydrolysates of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry. 2007; 102, 1317-1327.
8. Reyhani Poul, S., Jafarpour, S.A. and Safari. R. Evaluation of oil fatty acid profile, functional properties and antioxidants activity of hydrolyzate produced from rainbow trout (Oncorhynchus mykiss) viscera by application of protamex and neutrase enzymes. Iranian Food Science and Technology Research Journal. 2018; 14(1), 162-176 [In Persian].
9. Yeganeh, S., Esmaeili Kharyeki, M. and Ahamdi, H. Effect of hydrolysis time on the antioxidant activity of Common carp (Cyprinus carpio) head protein hydrolysate. Iranian Scientific Fisheries Journal. 2021; 29(6), 29-42 [In Persian].
10. Souissi, N., Bougatef, A., Triki-Ellouz, Y., and Nasri, M. Biochemical and functional properties of sardinella (Sardinella aurita) by-product hydrolysates. Food Technology and Biotechnology. 2007; 45(2), 187.
11. Yeganeh, S. and Reyhani Poul, S. Nanoencapsulation of bioactive peptides from shrimp wastes enzymatic hydrolysis with combined coating of nanoliposome-chitosan and evaluation of antibacterial, antioxidant and antihypertensive activity of the product. Iranian Scientific Fisheries Journal. 2022; 30(6), 83-95 [In Persian].
12. Wu, H.C., Chen, H.M. and Shiau, C.Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International. 2003; 36(9-10), 949-957.
13. Nalinanon, S., Benjakul, S., Kishimura, H. and Shahidi, F. Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chemistry. 2011; 124(4), 1354-1362.
14. Dey, S.S. and Dora, K.C. Antioxidative activity of protein hydrolysate produced by alcalase hydrolysis from shrimp waste (Penaeus monodon and Penaeus indicus). Journal of Food Science and Technology. 2014; 51(3), 449-457.
15. Surai, P.F. Selenium in poultry nutrition. Antioxidant properties, deficiency and toxicity. World's Poultry Science Journal. 2002; 58(3), 333-347.
16. Castex, M., Lemaire, P., Wabete, N. and Chim, L. Effect of probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress of Litopenaeus stylirostris under Vibrio nigripulchritudo challenge. Fish and Shellfish Immunology. 2010; 28(4), 622-631.
17. Statistical Year Book of the Fisheries Organization. 2018-2022. Deputy Director of Planning and Planning Management. Pp, 33 [In Persian].
18. Bamshad, M., Askari Hesni, M., Teimory, A. and Madjdzadeh, S.M. Morphology of the sagittal otolith in Liza aurata (Risso, 1810) from coastal habitats of Caspian Sea southern basin. Journal of Aquatic Physiology and Biotechnology. 2016; 4(1), pp.33-48 [In Persian].
19. Rabiei, S.M., Yeganeh, S. and Esmaeili Kharyeki, M. Investigation of antioxidant properties of protein hydrolysate derived from Caspian Sea Mullet by-products. Journal of Marine Scinence and Technology. 2021; 22(4), pp. 44-56 [In Persian].
20. Esmaeili Kharyeki, M., Rezaei, M., Khodabandeh, S. and Motamedzadegan. A. Antioxidant Activity of Protein Hydrolysate in Skipjack tuna Head. Journal of Fisheries Science and Technology. 2018; 7(1), 57-64 [In Persian].
21. Mishra, K., Ojha, H. and Chaudhury, N.K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chemistry. 2012; 130, 1036-1043.
22. Oyaizu, M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition. 1986; 44(6), 307–315.
23. Alemán, A., Giménez, B., Montero, P., and Gómez-Guillén, M. C. Antioxidant activity of several marine skin gelatins. LWT-Food Science and Technology. 2011; 44(2), 407-413.
24. Shimada, K., Fujikawa, K., Yahara, K. and Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry. 1992; 40(6), 945-948.
25. Je, J.Y., Qian, Z.J., Byun, H.G., and Kim, S.K. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry. 2007; 42(5), 840-846.
26. Jun, S.Y., Park, P.J., Jung, W.K. and Kim, S.K. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. European Food Research and Technology. 2004; 219(1), 20-26.
27. Ren J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C., Kakuda, Y. and Xue, S.J. Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chemistry. 2008; 108: 727-736.
28. Je, J.-Y., Park, P.-J. and Kim, S.-K. Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Research International. 2005; 38, 45-50.
29. Gbogouri, G.A., Linder, M., Fanni, J. and Parmen, A.M. Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. Journal of Food Science. 2004; 69, 615–622.
30. Karami, Z., Peighambardoust, S.H., Hesari, J. and Akbari-Adergani, B. Isolation and Identification of Antioxidant Peptides from Wheat Germ Protein by Pepsin Enzyme. Iranian Journal of Nutrition Sciences and Food Technology. 2019; 13(4), 39-50 [In Persian].
31. Lahart, N., O’Callaghan, Y., Aherne, S.A., O’Sullivan, D., FitzGerald, R.J. and O’Brien, N.M. Extent of hydrolysis effects on casein hydrolysate bioactivity: Evaluation using the human Jurkat T cell line. International Dairy Journal. 2011; 21 (10), 777- 82.
32. Li, X.‐X., Han, L.‐J. and Chen, L.‐J., C. In vitro antioxidant activity of protein hydrolysates prepared from corn gluten meal. Journal of the Science of Food and Agriculture. 2008; 88(9), 1660-6.
33. Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., and Nasri, M. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry. 2009; 114(4), 1198–1205.
34. Dong, S-Y., Zhao, Y.-H., Xu, D.-X., Liu, Z.-Y. and Zeng, M.-Y. Assessing the antioxidant activity of the ultrafiltration fractions from silver carp protein hydrolysate by different antioxidant methods. Journal of Aquatic Food Product and Technology. 2013; 22(6), 573-583.
35. Huang, X., Dai J., Fournier J., Ali A.M., Zhang Q. and Frenkel K. Ferrous ion autoxidation and its chelation in iron-loaded human liver HepG2 cells. Free Radical Biology and Medicine. 2002; 32(1), 84– 92.
36. Saiga, A., Tanabe, S. and Nishimura, T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry. 2003; 51(12), 3661–3667.
37. Kumar, N.S.S, Nazeer, R.A. and Jaiganesh, R. Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides. 2011; 32(7), 1496–1501.
38. Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D. and Nasri, M. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry. 2010; 118, 559–565.
39. Galla, N.R., Pamidighantam, P.R., Akula, S. and Karakala, B. Functional properties and in vitro antioxidant activity of roe protein hydrolysates of Channa striatus and Labeo rohita. Food Chemistry. 2012; 135(3), 1479-1484.
40. You, L., Zhao, M., Regenstein, J. M. and Ren, J. Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Research International. 2010; 43, 1167–1173.
41. Bakhshan, A.V., Alizadeh Doughikollaee, E. and Taheri, A. Investigation of antioxidative properties of protein hydrolysate obtained from waste, in the Salmon (Salmo salar) filleting operation. Journal of Comparative Pathobiology. 2014; 11(44), 1143 – 1152 [In Persian].
42. Nahvi, Z., Hosseini, S.F. and Zandi, M. Production of hydrolyzed protein from Kilka by enzymatic hydrolysis and evaluation of its bioactive properties. Journal of Aquatic Physiology and Biotechnology. 2017; 5(3), 39-58 [In Persian].
43. Suetsuna, K. Antioxidant peptides from the protease digest of prawn (Penaeus japonicus) muscle. Marine Biotechnology. 2000; 2(1), 5–10.
44. Khantaphant, S., and Benjakul, S. Comparative study on the proteases from fish pyloric caeca and the use for production of gelatin hydrolysate with antioxidative activity. Comparative Biochemistry and Physiology Part B. Biochemistry and Molecular Biology. 2008; 151 (4), 410-419.
45. Leong, L.P. and Shui, G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chemistry. 2002; 76(1), 69–75.
46. Ovissipour, M., Safari, R., Motamedzadegan, A. and Shabanpour, B. Chemical and biochemical hydrolysis of Persian sturgeon (Acipenser persicus) visceral protein. Food and Bioprocess Technology. 2012; 5(2), 460-465.
47. Ramezanzadeh, L., Hosseini, S. F. and Nikkhah, M. Enzymatic hydrolysis of rainbow trout (Oncorhynchus mykiss) skin gelatin and evaluation of its antioxidant properties. Fisheries Science and Technology. 2016; 5(2), 29-44.
48. Pires, C., Clemente, T., and Batista, I. Functional and antioxidative properties of protein hydrolysates from Cape hake by‐products prepared by three different methodologies. Journal of the Science of Food and Agriculture. 2013; 93(4), 771-780.
49. Godinho, I.S.M. Production of fish protein hydrolysates by a marine proteolytic strain, Lisboa: ISA, 87 p. 2013.
50. Intarasirisawat, R., Benjakul, S., Visessanguan, W. and Wu, J. Antioxidative and functional properties of protein hydrolysate from defatted skipjack (Katsuwonous pelamis) roe. Food Chemistry. 2012; 135(4), 3039-3048.
51. Chai, T.T., Tong, S.R., Law, Y.C., Ismail, N.I.N. and Wong, F.C. Anti-oxidative, metal chelating and radical scavenging effects of protein hydrolysates from blue-spotted stingray. Tropical Journal of Pharmaceutical Research. 2015; 14(8), 1349–1355.