بررسی شرایط استخراج عصاره هسته زیتون با استفاده از دستگاه هموژنایزر اولتراسونیک و ارزیابی خصوصیات ضد میکروبی آن‌ها

نویسندگان
1 دانشجوی دکتری گروه علوم و صنایع غذایی، دانشگاه کشاورزی و منابع طبیعی گرگان.
2 دانشگاه علوم کشاورزی و منابع طبیعی گرگان
3 استاد گروه علوم و مهندسی صنایع غذایی، دانشگاه تربیت مدرس.
4 دانش آموخته دکتری گروه میکروبیولوژی، دانشگاه شهید بهشتی.
چکیده
هدف از مطالعه حاضر بررسی شرایط استخراج عصاره هسته زیتون با استفاده از دستگاه هموژنایزر اولتراسونیک و بررسی خصوصیات ضد میکروبی عصاره­های دارای بالاترین میزان ترکیبات فنلی بود. طبق نتایج، عصاره اتانولی استخراج شده در زمان 3 دقیقه، دارای بالاترین میزان ترکیبات فنلی می­باشد. نوع حلال و مدت زمان استخراج، دارای تاثیر معنی­داری (05/0>P)، روی مقدار ترکیبات فنلی عصاره­های هسته زیتون می­باشد. همچنین، تیمارهای استخراج شده با حلال (آب 0 : اتانول100) در هر سه زمان (1، 2 و 3 دقیقه) و سپس تیمارهای استخراج شده با حلال اتانول80: آب 20 در زمان­های 2 و 3 دقیقه دارای بالاترین میزان ترکیبات فنلی بودند؛ و به عنوان تیمارهای منتخب جهت انجام آزمون­های میکروبی، انتخاب شدند. در ارتباط با خصوصیات ضد میکروبی، طبق نتایج بدست آمده از آزمون انتشار چاهک، هر سه عصاره اتانولی، دارای خصوصیات ضد میکروبی بودند. از سوی دیگر، در آزمون اندازه گیری چگالی نوری که جهت انتخاب تیمار بهینه صورت گرفت، نتایج نشان داد که عصاره اتانولی استخراج شده در زمان 3 دقیقه، دارای بالاترین خاصیت ضدمیکروبی می­باشد؛ در نتیجه این عصاره به عنوان بهترین تیمار انتخاب و ترکیبات فنلی آن بوسیله دستگاه GC-MS اندازه گیری شد. نتایج نشان داد که، بیشترین درصد فراوانی ترکیب فنلی در این عصاره مربوط به هیدروکسی تایروزول و تایروزول می­باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the extraction conditions of olive Seed extract using a Ultrasonic Homogenizer and evaluating their antimicrobial properties

نویسندگان English

abbas namadipour 1
Habib Allah Mirzaei 2
Mohammad Ali Sahari 3
mansooreh hooshiyar 4
1 P.H.D. Student, Dept. of Food Science & Technology, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan, Iran
2 Gorgan University of Agricultural Sciences & Natural Resources
3 Professor, Dept. of Food Science & Technology, College of Agriculture, Tarbiat Modares University, Tehran, Iran
4 Former PhD Student, Department of Microbiology , Shahid Beheshti University, Tehran, Iran
چکیده English

The aim of the present study was to investigate the extraction conditions of olive kernel extract using an ultrasonic homogenizer and to investigate the antimicrobial properties of the extract with the highest amount of phenolic compounds. According to the results, the ethanolic sample which was extracted in 3 minutes has the highest amount of phenolic compounds. The kinds of solvent and extraction time have significant effects (P<0.05) on the amount of the sample phenolic compounds. The treatments extracted with solvent (water 0: 100 ethanol) in all three times (1, 2 and 3 minutes) and then the treatments extracted with solvent ethanol 80: water 20 in 2 and 3 minutes had the highest amount of phenolic compounds thus as the treatment for performing microbial tests were selected. In relation to antimicrobial properties, according to the results obtained from the well diffusion test, all three ethanolic extracts had antimicrobial properties. Also, the optical density measurement test (OD or OD600) was done to choose the optimal treatment. The results showed that the ethanolic extract in 3 minutes has the highest antimicrobial properties, thus this extract was selected as the best treatment and its phenolic compounds were measured by GC-MS. The results showed that the highest percentage of phenolic compounds in this extract is related to hydroxytyrosol and tyrosol.

کلیدواژه‌ها English

Olive kernel extract
phenolic compound
Antimicrobial properties
GC-MS
[1] Tajkarimi, M., Ibrahim, S., & Cliver, D. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21(9), 1199-1218.
[2] Kuo L-M Y, Tseng P-Y, Lin Y-C, Liaw C-C, Zhang L-J, Tsai K-C, et al. New hirsutinolide-type sesquiterpenoids from vernonia cinerea inhibit nitric oxide production in LPS-stimulated RAW264.7 cells. Planta Med. 2018;84(18):1348-1354. doi: 10.1055/a-0647-1901 PMID: 29986352.
[3] Rad BZ, Mardjanmehr H, Sasani F, Khosravi A, Gharagozlou MJ. Evaluation of skin repairing and antifungal properties of alcoholic extract of laleh abbasi (mirabilis jalapa) leaf on induced wounds in laboratory white rat model. J Vet Res. 2023;78(1):9-19. doi: 10.22059/jvr.2022.340558.3247 (In Persian).
[4] Anwar, F., and Przybylski, R. (2012). Effect of Solvents Extraction on Total Phenolics and Antioxidant Activity of Extractions from Flaxseed (Linum Usitatissimum L.). ACTA Scientiarum Polonorum Technologia Alimentaria. 11(3):293-301.
[5] Daane, K. M., and Johnson, M. W. (2010). Olive fruit fly: managing an ancient pest in modern times. Annual review of entomology, 55, 151-169.
[6] Jiménez-Díaz, R. M., Cirulli, M., Bubici, G., del Mar Jiménez-Gasco, M., Antoniou, P. P., and Tjamos, E. C. (2012). Verticillium wilt, a major threat to olive production: current status and future prospects for its management. Plant Disease, 96(3), 304-329.
[7] Hussein, A.M.S., M.M. Kamil and G.F. Mohamed. (2011). Physicochemical and sensorial quality of semolina defatted guava seed flour composite pasta. Journal of the American Society. 7(6): 623-629.
[8] Abolfath, M., Cheloei, N., Asgari, S., Beladian, E., Ghasemzadeh-mohammadi, V. (2024). Investigating Variables of Time, Extraction Solvent Composition and Ratio of Solvent-to-plant on Antioxidant and Antibacterial Characteristics of Striata Plants and Olive Leaves Using Microwave and Ultrasonic Extraction Methods. Iranian J Nutr Sci Food Technol; 19 (3) :43-53.
[9] Kadir, B., Fatümetüzzehra, K., Mehmet, A., A., , Selami, G., and Yakup, Y. (2023). Antioxidant and antithrombotic properties of fruit, leaf, and seed extracts of the Halhalı olive (Olea europaea L.) native to the Hatay region in Turkey. Foods and Raw Materials.11(1).
[10] Bianci, G., (2003). Lipids and phenols in table olives. Eur. J. Lipid Sci. Technol. 105, 229–242.
[11] Mokhtari, M., Ghanadi, A. (2013). The effects Of hydro-alcoholic extract Of olive seed on the levels Of the gonadotropines and ovarian steroids in immature female rat. Original Research, 2(6).
[12] Maestri, D., Barrionuevo, D., Bodoira, R., Zafra, A., Jiménez-López, J., Alché, J., d., D. (2019). Nutritional profile and nutraceutical components of olive (Olea europaea L.) seeds. Journal of Food Science and Technology, 56(9), 4359–4370. doi:10.1007/s13197-019-03904-5.
[13] namadipour A, sadeghi mahoonak A. 2018. Antioxidant interactions in date palm and zizyphus extracts combination. FSCT ; 15 (77) :38-31. URL: http://fsct.modares.ac.ir/article-7-8029-fa.html.
[14] Capannesi, C., Palchetti, I., Mascini, M., Parenti, A. (2000). Electrochemicalsensor andbiosensor for polyphenols detection in oliveoils. Food Chemistry. 71: 553–562.
[15] Fasihi, H., Fazilati, M., Hashemi, M. and Noshiravani, N. (2017). Novel Carboxymethyl Cellulose- Polyvinyl alcohol blend films stabilized by Pickering emulsion in corporation method. Carbohydrate Polymers, 167, 79-89.
[16] Habibi, S. A., Soltani, M., Ahmadivand, S., and Taheri-Mirghaed, A. (2019). In vitro antibacterial activity of some medical plants against Streptococcus iniae. New Findings in Veterinary Microbiology, 1(2), 36-46. doi: 10.35066/J040.2018.707.
[17] Keskes, H., Belhadj, S., Jlail, L., El Feki, A., Damak, M., Sayadi, S. et al., (2017). LC-MS–MS and GCMS analyses of biologically active extracts and fractions from Tunisian Juniperus phoenice leaves. Pharmaceutical Biology, 55(1):88-95.
[18] Karabegovic, I.T., Stojicevic, S.S., Velickovic, D.T., Todorovic, Z. B., Nikolic, N. C., and Lazic, M. L. (2014). The effect of different extraction techniques on the compositionand antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Industrial Crops and Products, 54, 142–148.
[19] Alu’datt, M. H., Alli, I., Ereifej, K., Alhamad, M. N., Alsaad, A., Rababeh, T. (2011). Optimisation and characterisation of various extraction conditions of phenolic compounds and antioxidant activity in olive seeds. Natural Product Research, 25(9), 876–889. doi:10.1080/14786419.2010.489048.
[20] Kchaou, W., Abbes, F., BLecker, C., Attia, H., and Besbes, S. (2013). Effects of extraction solvents on fenolic contents and antioxidant activities of Tunisian date varieties (Phoenix dactylifera L.). Industrial Crops and Products. 45:262-269.
[21] Markín, D., Duek, L., and Berdícevsky, I. (2003). In vitro antimicrobial activity of olive leaves. Mycoses, 46(3–4), 132–136. https://doi.org/10.1046/j.1439-0507.2003.00859.x.
[22] Liu, Y., McKeever, L. C., and Malik, N. S. A. (2017). Assessment of the antimicrobial activity of olive leaf extract against foodborne bacterial pathogens. Frontiers in Microbiology, 8(FEB), 113. https://doi.org/10.3389/fmicb.2017.00113.
[23] Hemeg, H.A.; Moussa, I.M.; Ibrahim, S.; Dawoud, T.M.; Alhaji, J.H.; Mubarak, A.S.; Kabli, S.A.; Alsubki, R.A.; Tawfik, A.M.; Marouf, S.A.(2020). Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi J. Biol. Sci. 27, 3221–3227.
[24] Younis, H., El shalakany, W., Amin, S., Abdel-Reheem, M., and Ibrahima, H. (2023). Biological activities and related phenolic compounds content of olive and plum stones ethanolic extract. Egyptian Journal of Chemistry, 66(13), 2307-2330. doi: 10.21608/ejchem.2023.209650.7948.
[25] Ojagh, S. M., Rezaei, M., Razavi, S. H., and Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry, 120(1), 193–198.
[26] Boskou, G. (2010). Olives and Olive Oil in Health and Disease Prevention || Antioxidant Capacity and Phenolic Profile of Table Olives from the Greek Market., 925–934. doi:10.1016/B978-0-12-374420-3.00099-1.
[27] Malik, N.S.A. and Bradford, J.M. (2006). Changes in oleuropein levels during differentiation and development of floral buds in a Arbeqtunaolives. Scientia Hort. 110: 274-278.
[28] Mallamaci, R.; Budriesi, R.; Clodoveo, M.L.; Biotti, G.; Micucci, M.; Ragusa, A.; Curci, F.; Muraglia, M.; Corbo, F.; Franchini, C. (2021). Olive Tree in Circular Economy as a Source of Secondary Metabolites Active for Human and Animal Health Beyond Oxidative Stress and Inflammation. Molecules 2021, 26, 1072. https://doi.org/10.3390/molecules26041072.
[29] Gonçalves, A., Silva, E., Brito, C., Martins, S., Pinto, L., Dinis, L., … Correia, C. M. (2019). Olive tree physiology and chemical composition of fruits are modulated by different deficit irrigation strategies. Journal of the Science of Food and Agriculture. doi:10.1002/jsfa.10064
[30] Ben Mansour, A., Porter, E. A., Kite, G. C., Simmonds, M. S. J., Abdelhedi, R., Bouaziz, M. (2015). Phenolic Profile Characterization of Chemlali Olive Stones by Liquid Chromatography-Ion Trap Mass Spectrometry. Journal of Agricultural and Food Chemistry, 63(7), 1990–1995. doi:10.1021/acs.jafc.5b00353.
[31] Michel, T., Khlif, I., Kanakis, P., Termentzi, P., Allouche, N., Halabalaki, M., Skaltsouni, A. (2015). UHPLC–DAD–FLD and UHPLC– HRMS/MS based metabolic profiling and characterization of different Olea europaea organs of Koroneiki and Chetoui varieties. Phytochem Lett 11:424–439.