[1] Mushollaeni, W., & Tantalu, L. (2019). Determination and characterization of phenolics, flavonoids, and dietary fiber in fermented Lebui bean (Cajanus sp.) extracts by the SSF method. Bioscience Research, 16(2), 1600-1606.
[2] Mushollaeni, W., & Tantalu, L. (2022). Differences in effect of pre-microencapsulation process on components of bioactive compounds in local Lebui bean extract from West Nusa Tenggara. Bioscience Research, 19(4), 1914-1925.
[3] Mushollaeni, W., & Tantalu, L. (2019, November 5). Method for producing kacang lebui powder (Patent No. IDS000004695). Universitas Tribhuwana Tunggadewi.
[4] Mushollaeni, W., & Rahmawati, A. (2022, October 14). Method for extracting nutritional and bioactive compounds from kacang lebui powder using a combination of pre-microencapsulation and solvent extraction methods (Registered Patent No. S00202211345). Universitas Tribhuwana Tunggadewi.
[5] Mushollaeni, W., Rahmawati, A., & Tantalu, L. (2022). Lebui beans: Nutrition, bioactive compounds, and their utilization (Copyright No. EC00202289886).
[6] Mushollaeni, W., Rahmawati, A., & Tantalu, L. (2023). Nutrition of agroindustrial products (Copyright No. EC00202388284).
[7] Mushollaeni, W., Kumalaningsih, S., Wignyanto, Santoso, I. (2017). Effect of solid-state fermentation on anthocyanin and physicochemical content of lebui bean (Cajanus sp.). Bioscience Research, 14(4), 1096-1102.
[8] Mushollaeni, W., Kumalaningsih, S., Wignyanto, Santoso, I. (2018). Screening of new bioactive in lebui beans (Cajanus sp.) of Lombok. International Food Research Journal, 25(1), 25-33.
[9] Mushollaeni, W., Tantalu, L. (2019). Anthocyanin and nutritional contents of fermented lebui bean (Cajanus sp.) through SSF method and induced by Rhizopus sp. and Saccharomyces sp. IOP Conference Series: Earth and Environmental Science, 465.
[10] ULP (Testing Service Unit). (2015). Methods for the analysis of total phenolics and total flavonoids. Airlangga University.
[11] AOAC International. (2000). Official methods of analysis of AOAC International (17th ed.). Gaithersburg: Association of Analytical Communities.
[12] Asp, N.G. (1987). Dietary fibre—Definition, chemistry, and analytical determination. Molecular Aspects of Medicine, 9(1), 17–29. https://doi.org/10.1016/0098-2997(87)90014-8.
[13] Mushollaeni, W., & Rahmawati, A. (2024). Determination of the combination of microencapsulation materials in the foam-mat process on Indonesian local black bean extract using an optimization model. Pakistan Journal of Life and Social Sciences, 22(1), 1390-1400.
[14] Kumari, M., & Gupta, S. K. (2019). Response surface methodological (RSM) approach for optimizing the removal of trihalomethanes (THMs) and its precursor’s by surfactant modified magnetic nanoadsorbents (sMNP): An endeavor to diminish probable cancer risk. Scientific Reports, 9, 18339. https://doi.org/10.1038/s41598-019-54902-8
[15] Ratnawati, S. E., Ekantari, N., Pradipta, R. W., & Paramita, B. L. (2018). The application of response surface methodology (RSM) on the optimization of catfish bone calcium extraction. Jurnal Perikanan Universitas Gadjah Mada, 20(1), 41-48.
[16] Wang, X., Wu, L., Cao, J., Hong, X., Ye, R., Chen, W., & Yuan, T. (2016). Magnetic effervescent tablet-assisted ionic liquid dispersive liquid–liquid microextraction of selenium for speciation in foods and beverages. Food Additives & Contaminants: Part A, 33(7), 1190–1199.
[17] Bigliardi, B., & Galati, F. (2019). Innovation trends in the food industry. Trends in Food Science & Technology, 31, 118–129. https://doi.org/10.1016/j.tifs.2013.03.006
[18] Bin, A., Gianoni, C., Mendes, P. J. V., Rio, C., Salles-Filho, S. L. M., & Capanema, L. M. (2018). Organization of research and innovation: A comparative study of public agricultural research institutions. Journal of Technology Management & Innovation, 8, 209–218. https://doi.org/10.4067/S0718-27242013000300048
[19] Brown, L., Caligiuri, S. P. B., Brown, D., & Pierce, G. N. (2018). Clinical trials using functional foods provide unique challenges. Journal of Functional Foods, 45, 233–238. https://doi.org/10.1016/j.jff.2018.01.024.
[20] Hussain, S., & Raza, S. (2020). Optimization of roselle calyces extract and citric acid levels in ice cream using response surface methodology. International Journal of Food Science & Technology, 55(5), 1874-1882. Retrieved from repository.uph.edu.
[21] Mahmoud, M. S., & El-Bakry, A. M. (2017). Optimization of low-fat ice cream production using resistant starch and maltodextrin as fat-replacing agents. Food Bioprocess Technology, 10(4), 687-698. https://doi.org/10.1007/s13197-017-2492-0