[1] Li, Z., Zhu, L., Zhao, F., Li, J., Zhang, X., Kong, X., ... & Zhang, Z. (2022). Plant salinity stress response and nano-enabled plant salt tolerance. Frontiers in Plant Science, 13, 843994.
[2] Rasheed, F., Anjum, N. A., Masood, A., Sofo, A., & Khan, N. A. (2022). The key roles of salicylic acid and sulfur in plant salinity stress tolerance. Journal of Plant Growth Regulation, 41(5), 1891-1904.
[3] Wani, S. H., Kumar, V., Khare, T., Guddimalli, R., Parveda, M., Solymosi, K., ... & Kavi Kishor, P. B. (2020). Engineering salinity tolerance in plants: progress and prospects. Planta, 251, 1-29.
[4] Chao, W., Rao, S., Chen, Q., Zhang, W., Liao, Y., Ye, J., ... & Xu, F. (2022). Advances in research on the involvement of Se in regulating plant ecosystems. Plants, 11(20), 2712.
[5] Tolerance, S. (2023). A Recent Update on the Impact of Nano-Se on Plant Growth, Metabolism, and Stress Tolerance. Plants, 12, 1-24.
[6] Hawrylak-Nowak, B. (2022). Biological activity of Se in plants: Physiological and biochemical mechanisms of phytotoxicity and tolerance. In Se and nano-Se in environmental stress management and crop quality improvement (pp. 341-363). Cham: Springer International Publishing.
[7] Wang, Z., Huang, W., & Pang, F. (2022). Se in soil–Plant-Microbe: A review. Bulletin of Environmental Contamination and Toxicology, 108(2), 167-181.
[8] Schiavon, M., Lima, L. W., Jiang, Y., & Hawkesford, M. J. (2017). Effects of Se on plant metabolism and implications for crops and consumers. Se in plants: Molecular, physiological, ecological and evolutionary aspects, 257-275.
[9] Amirjani, M.R. (2010). Effect of NaCl on some physiological parameters of rice. European Journal Biology Science, 3(1), 6-16.
[10] Guo, Q., Ye, J., Zeng, J., Chen, L., Korpelainen, H., & Li, C. (2023). Se species transforming along soil–plant continuum and their beneficial roles for horticultural crops. Horticulture research, 10(2), uhac270.
[11] Ban, Z., Niu, C., Li, L., Gao, Y., Liu, L., Lu, J.,... Chen, C. (2024). Exogenous brassinolides and calcium chloride synergically maintain quality attributes of jujube fruit (Ziziphus jujuba Mill.). Postharvest Biology and Technology, 216, 113039.
[12] Du, K., Huang, J., Wang, W., Zeng, Y., Li, X.,... Zhao, F. (2024). Monitoring Low-Temperature Stress in Winter Wheat Using TROPOMI Solar-Induced Chlorophyll Fluorescence. IEEE Transactions on Geoscience and Remote Sensing, 62, 1-11.
[13] Li, Z., Liang, J., Lu, L., Liu, L., & Wang, L. (2024). Effect of ferulic acid incorporation on structural, rheological, and digestive properties of hot-extrusion 3D-printed rice starch. International Journal of Biological Macromolecules, 266, 131279.
[14] Hasanuzzaman, M., Bhuyan, M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., ... & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681.
[15] Sharma, A., Gupta, S., Negi, N. P., Patel, D. P., Raina, M., & Kumar, D. (2022). Se and nano-Se-mediated drought stress tolerance in plants. In Se and nano-Se in environmental stress management and crop quality improvement (pp. 121-148). Cham: Springer International Publishing.
[16] Singh, A., & Wani, M. (2019). ’In-vitro studies of salinity stress response in Allium sativum. International J Curr Adv Res, 8(06), 19327-19331.
[17] Tudu, C. K., Dutta, T., Ghorai, M., Biswas, P., Samanta, D., Oleksak, P., ... & Dey, A. (2022). Traditional uses, phytochemistry, pharmacology and toxicology of garlic (Allium sativum), a storehouse of diverse phytochemicals: A review of research from the last decade focusing on health and nutritional implications. Frontiers in Nutrition, 9, 949554.
[18] Lidiková, J., Čeryová, N., Tóth, T., Musilová, J., Vollmannová, A., Mammadova, K., & Ivanišová, E. (2022). Garlic (Allium sativum L.): Characterization of Bioactive Compounds and Related Health Benefits. In Herbs and Spices-New Advances. IntechOpen.
[19] Diriba-Shiferaw, G., Nigussie-Dechassa, R., Kebede, W., Getachew, T., & Sharma, J. J. (2013). Growth and nutrients content and uptake of garlic (Allium sativum L.) as influenced by different types of fertilizers and soils. Science, Technology and Arts Research Journal, 2(3), 35-50.
[20] Pączka, G., Mazur-Pączka, A., Garczyńska, M., Kostecka, J., & Butt, K. R. (2021). Garlic (Allium sativum L.) cultivation using vermicompost-amended soil as an aspect of sustainable plant production. Sustainability, 13(24), 13557.
[21] Ritchie, S.W., Nguyen, H.T. & Holaday, A.S. (1990). Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Science, 30(1), 105-111.
[22] Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1.
[23] Aebi, H. & Lester, P. (1984). Catalase in vitro. In Methods in Enzymology. Vol. 105 (ed. Packer, L.) 121–126 (Academic Press, New York, New York). https://doi.org/10.1016/S0076-6879(84)05016-3
[24] Zafar, S., Hasnain, Z., Danish, S., Battaglia, M. L., Fahad, S., Ansari, M. J., & Alharbi, S. A. (2024). Modulations of wheat growth by Se nanoparticles under salinity stress. BMC Plant Biology, 24(1), 35.
[25] Khan, Z., Thounaojam, T. C., Chowdhury, D., & Upadhyaya, H. (2023). The role of Se and nano Se on physiological responses in plant: a review. Plant Growth Regulation, 100(2), 409-433.
[26] Amerian, M., Palangi, A., Gohari, G., & Ntatsi, G. (2024). Enhancing salinity tolerance in cucumber through Se biofortification and grafting. BMC Plant Biology, 24(1), 24.
[27] Kusvuran, S., Kiran, S., & Ellialtioglu, S. S. (2016). Antioxidant enzyme activities and abiotic stress tolerance relationship in vegetable crops. Abiotic and biotic stress in plants—recent advances and future perspectives, 481-506.
[28] Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in environmental science, 2, 53.
[29] Bhat, M. Y., Gul, M. Z., & Dar, J. S. (2022). Gene expression and role of antioxidant enzymes in crop plants under stress. In Antioxidant Defense in Plants: Molecular Basis of Regulation (pp. 31-56). Singapore: Springer Nature Singapore.
[30] de Queiroz, A. R., Hines, C., Brown, J., Sahay, S., Vijayan, J., Stone, J. M., ... & Buan, N. R. The effects of exogenously applied antioxidants on plant growth and resilience., 2023, 22.
[31] Ashraf, M. & Ali, Q. (2008). Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environmental and Experimental Botany, 63(1-3), 266-273.
[32] Kafi, M., Borzoei, A., Salehi, M., Kamandi, A., Maesoumi, A. & Nabati, J. (2009). Physiology of environmental stresses in plants. Publications University of Mashhad. (In Persian).
[33] Samynathan, R., Venkidasamy, B., Ramya, K., Muthuramalingam, P., Shin, H., Kumari, P. S., ... & Sivanesan, I. (2023). A recent update on the impact of nano-Se on plant growth, metabolism, and stress tolerance. Plants, 12(4), 853.
[34] Sairam, R.K., Rao, K.V. & Srivastava, G.C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163(5), 1037-1046.