فیلم خوراکی فعال بر پایه موسیلاژ دانه بالنگو: بررسی اثرات نانوذرات اکسید روی و اسانس گیاه زولنگ

نویسندگان
گروه علوم و صنایع غذایی، دانشگاه ارومیه، ارومیه - ایران
چکیده
در این تحقیق از موسیلاژ دانه بالنگو به عنوان پایه فیلم استفاده شد، در حالی که اسانس حاصل از برگ و ساقه گیاه زولانگ به همراه نانوذرات اکسید روی (ZnO) به عنوان افزودنی برای تولید فیلم‌های خوراکی فعال ترکیب شدند. یافته‌ها نشان داد که ترکیب اسانس حاصل از برگ و ساقه گیاه زولانگ (ZEO) قابلیت‌های آنتی اکسیدانی، نفوذپذیری، خواص حرارتی، استحکام کششی و ازدیاد طول فیلم را افزایش می‌دهد. تجزیه و تحلیل FT-IR ایجاد پیوندهای هیدروژن-اکسیژن جدید بین ZEO و زنجیره های پلی ساکارید را تایید کرد که به تقویت ساختار فیلم کمک می کند. درحالیکه افزودن نانوذرات اکسید روی باعث کاهش خواص آنتی اکسیدانی، نفوذپذیری، کریستالینیتی، مقاومت حرارتی، رطوبت و استحکام کششی لایه‌ها شد. علاوه بر این، نانوذرات ZnO به افزایش پلاستیسیته کمک کردند که باعث افزایش کشش پذیری لایه ها و ضخامت بیشتر آنها شد. تصویربرداری SEM برهمکنش بین نانوذرات ZEO و ZnO را تأیید کرد و با یافته‌های آنالیز FT-IR همسو بود. به طور کلی، این مطالعه نشان می‌دهد که فیلم‌هایی که با استفاده از موسیلاژ دانه بالنگو در ترکیب با نانوذرات ZEO و ZnO ساخته شده‌اند، پتانسیل بالایی برای کاربرد در بسته‌بندی مواد غذایی و فیلم‌ها یا پوشش‌های فعال، به‌ویژه برای مواد آسیب‌پذیر در برابر اکسیداسیون دارند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Lallemantia royleana seed mucilage-based active edible films: The effects of zinc oxide nanoparticles and zoulang plant’s essential oil

نویسندگان English

Moein Nabavi
Mohsen Esmaiili
Arash Ghaitaranpour
Graduated
چکیده English

In this research, Lallemantia royleana seed mucilage was used as the base of the film, while essential oil derived from the zoulang plant’s leaves and stems, along with zinc oxide nanoparticles (ZnO), were incorporated as additives to develop active edible films. Findings indicated that incorporating ZEO enhanced the films' antioxidant capabilities, permeability, thermal properties, tensile strength, and elongation of the film. FT-IR analysis confirmed the creation of new hydrogen-oxygen bonds between ZEO and the polysaccharide chains, contributing to a reinforced film structure. Conversely, the addition of ZnO nanoparticles was found to decrease the antioxidant properties, permeability, crystallinity, thermal resistance, moisture content, and tensile strength of the films. Additionally, ZnO nanoparticles contributed to enhanced plasticity, which increased the films' stretchability and resulted in greater thickness. SEM imaging verified the interaction between ZEO and ZnO nanoparticles, aligning with the findings from the FT-IR analysis. Overall, the study suggests that films developed using Lallemantia royleana mucilage, in combination with ZEO and ZnO nanoparticles, demonstrate strong potential for applications in food packaging and active films or coatings, particularly for materials vulnerable to oxidation.

کلیدواژه‌ها English

Active packaging
ZnO nanoparticles
Zoulang plant
Lallemantia royleana seed mucilage
[1] F. A. Paine, H. Y. Paine, A Handbook of Food Packaging. 2ed edn.(Springer US1992), pp. 195
[2] G. L. Robertson, Food Packaging Principles and Practice. 3ed edn.(CRC Press, Boca Raton, 2016)

[3] N. P. Mahalik, A. N. Nambiar. (2010). Trends in food packaging and manufacturing systems and technology. Trends in Food Science & Technology, 21(3), 117-128.
[4] J. A. Aguirre-Joya, et al., Chapter 1 - Basic and Applied Concepts of Edible Packaging for Foods, in Food Packaging and Preservation, A.M. Grumezescu and A.M. Holban, Editors. 2018, Academic Press. p. 1-61.
[5] M. Sardarodiyan, A. Arian far, A. Mohamadi Sani, S. Naji-Tabasi. (2020). Enzymatic purification of Balangu seed (Lallemantia royleana) gum and evaluation of its functional and antioxidant properties. Journal of food processing and preservation, 12(1), 95-112.
[6] A. M. Amini, Emerging Natural Hydrocolloids: Rheology and Functions, in Balangu (Lallemantia royleana) Seed Gum, S.M.A. Razavi, Editor. 2019, Wiley.
[7] S. M. A. Razavi, S. W. Cui, H. Ding. (2016). Structural and physicochemical characteristics of a novel water-soluble gum from Lallemantia royleana seed. International Journal of Biological Macromolecules, 83, 142-151.
[8] T. Nakatsu, A. T. Lupo, J. W. Chinn, R. K. L. Kang, Biological activity of essential oils and their constituents, in Studies in Natural Products Chemistry, R. Atta ur, Editor. 2000, Elsevier. p. 571-631.
[9] A. Yıldırım, A. Mavi, M. Oktay, A. A. Kara, Ö. F. Algur, V. Bilaloǧlu. (2000). Comparison of Antioxidant and Antimicrobial Activities of Tilia (Tilia Argentea Desf Ex DC), Sage (Salvia Triloba L.), and Black Tea (Camellia Sinensis) Extracts. Journal of agricultural and food chemistry, 48(10), 5030-5034.
[10] L. Atarés, C. De Jesús, P. Talens, A. Chiralt. (2010). Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 99(3), 384-391.
[11] W. X. Du, C. W. Olsen, R. J. Avena-Bustillos, T. H. McHugh, C. E. Levin, M. Friedman. (2009). Effects of Allspice, Cinnamon, and Clove Bud Essential Oils in Edible Apple Films on Physical Properties and Antimicrobial Activities. Journal of Food science, 74(7), M372-M378.
[12] G. Ward, A. Nussinovitch. (1996). Gloss Properties and Surface Morphology Relationships of Fruits. Journal of Food science, 61(5), 973-977.
[13] M. Hakimi Rad. (2018). Investigation of physicochemical and sensory properties of a Zoulang (Eryngium caucasicum) flavored yogurt. Journal of Food and Bioprocess Engineering, 1(2), 143-148.
[14] A. Ebrahimzadeh Mohamamd, F. Nabavi Seyed, M. Nabavi Seyed. (2009). Antioxidant Activity of Leaves and Inflorescence of Eryngium Caucasicum Trautv at Flowering Stage. Pharmacognosy Research, 1(6).
[15] F. Mirjalili, A. Yassini Ardekani. (2017). Preparation and characterization of starch film accompanied with ZnO nanoparticles. Journal of Food Process Engineering, 40(6), e12561.
[16] Y. Liu, Y. Liu, K. Han, Y. Cai, M. Ma, Q. Tong, L. Sheng. (2019). Effect of nano-TiO2 on the physical, mechanical and optical properties of pullulan film. Carbohydrate Polymers, 218, 95-102.
[17] M. Jouki, S. A. Mortazavi, F. T. Yazdi, A. Koocheki. (2014). Characterization of antioxidant–antibacterial quince seed mucilage films containing thyme essential oil. Carbohydrate Polymers, 99, 537-546.
[18] N. Khazaei, M. Esmaiili, Z. E. Djomeh, M. Ghasemlou, M. Jouki. (2014). Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydrate Polymers, 102, 199-206.
[19] M. Nouraddini, M. Esmaiili, F. Mohtarami. (2018). Development and characterization of edible films based on eggplant flour and corn starch. International Journal of Biological Macromolecules, 120, 1639-1645.
[20] H. Almasi, S. Azizi, S. Amjadi. (2020). Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocolloids, 99, 105338.
[21] W. Brand-Williams, M. E. Cuvelier, C. Berset. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30.
[22] H. Yong, X. Wang, X. Zhang, Y. Liu, Y. Qin, J. Liu. (2019). Effects of anthocyanin-rich purple and black eggplant extracts on the physical, antioxidant and pH-sensitive properties of chitosan film. Food Hydrocolloids, 94, 93-104.
[23] T. M. P. Ngo, T. M. Q. Dang, T. X. Tran, P. Rachtanapun. (2018). Effects of Zinc Oxide Nanoparticles on the Properties of Pectin/Alginate Edible Films. International Journal of Polymer Science, 2018, 5645797.
[24] A. Dashipour, V. Razavilar, H. Hosseini, S. Shojaee-Aliabadi, J. B. German, K. Ghanati, M. Khakpour, R. Khaksar. (2015). Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. International Journal of Biological Macromolecules, 72, 606-613.
[25] E. Arezoo, E. Mohammadreza, M. Maryam, M. N. Abdorreza. (2020). The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. International Journal of Biological Macromolecules, 157, 743-751.
[26] M. Alizadeh-Sani, E. Moghaddas Kia, Z. Ghasempour, A. Ehsani. (2021). Preparation of Active Nanocomposite Film Consisting of Sodium Caseinate, ZnO Nanoparticles and Rosemary Essential Oil for Food Packaging Applications. Journal of Polymers and the Environment, 29(2), 588-598.
[27] N. Gontard, S. Guilbert, J.-L. Cuq. (1992). Edible Wheat Gluten Films: Influence of the Main Process Variables on Film Properties using Response Surface Methodology. Journal of Food science, 57(1), 190-195.
[28] S. F. Hosseini, M. Rezaei, M. Zandi, F. Farahmandghavi. (2015). Bio-based composite edible films containing Origanum vulgare L. essential oil. Industrial Crops and Products, 67, 403-413.
[29] K.-K. Li, S.-W. Yin, X.-Q. Yang, C.-H. Tang, Z.-H. Wei. (2012). Fabrication and Characterization of Novel Antimicrobial Films Derived from Thymol-Loaded Zein–Sodium Caseinate (SC) Nanoparticles. Journal of agricultural and food chemistry, 60(46), 11592-11600.
[30] H. Almasi, B. Ghanbarzadeh, A. A. Entezami. (2010). Physicochemical properties of starch–CMC–nanoclay biodegradable films. International Journal of Biological Macromolecules, 46(1), 1-5.
[31] E. Jamróz, L. Juszczak, M. Kucharek. (2018). Investigation of the physical properties, antioxidant and antimicrobial activity of ternary potato starch-furcellaran-gelatin films incorporated with lavender essential oil. International Journal of Biological Macromolecules, 114, 1094-1101.
[32] K. Vaezi, G. Asadpour, H. Sharifi. (2019). Effect of ZnO nanoparticles on the mechanical, barrier and optical properties of thermoplastic cationic starch/montmorillonite biodegradable films. International Journal of Biological Macromolecules, 124, 519-529.
[33] L.-J. Wang, Y.-C. Yin, S.-W. Yin, X.-Q. Yang, W.-J. Shi, C.-H. Tang, J.-M. Wang. (2013). Development of Novel Zein-Sodium Caseinate Nanoparticle (ZP)-Stabilized Emulsion Films for Improved Water Barrier Properties via Emulsion/Solvent Evaporation. Journal of agricultural and food chemistry, 61(46), 11089-11097.
[34] M. Lacroix, Mechanical and Permeability Properties of Edible Films and Coatings for Food and Pharmaceutical Applications, in Edible Films and Coatings for Food Applications, K.C. Huber and M.E. Embuscado, Editors. 2009, Springer New York: New York, NY. p. 347-366.
[35] S. Shankar, X. Teng, G. Li, J.-W. Rhim. (2015). Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids, 45, 264-271.
[36] M. Anker, J. Berntsen, A.-M. Hermansson, M. Stading. (2002). Improved water vapor barrier of whey protein films by addition of an acetylated monoglyceride. Innovative Food Science & Emerging Technologies, 3(1), 81-92.
[37] S. M. B. Hashemi, A. Mousavi Khaneghah. (2017). Characterization of novel basil-seed gum active edible films and coatings containing oregano essential oil. Progress in Organic Coatings, 110, 35-41.
[38] B. A. Behbahani, A. A. Imani Fooladi. (2018). Shirazi balangu (Lallemantia royleana) seed mucilage: Chemical composition, molecular weight, biological activity and its evaluation as edible coating on beefs. International Journal of Biological Macromolecules, 114, 882-889.
[39] H. Wang, X. Gong, X. Guo, C. Liu, Y.-Y. Fan, J. Zhang, B. Niu, W. Li. (2019). Characterization, release, and antioxidant activity of curcumin-loaded sodium alginate/ZnO hydrogel beads. International Journal of Biological Macromolecules, 121, 1118-1125.
[40] S. Roy, J.-W. Rhim. (2020). Carboxymethyl cellulose-based antioxidant and antimicrobial active packaging film incorporated with curcumin and zinc oxide. International Journal of Biological Macromolecules, 148, 666-676.
[41] S. Estevez-Areco, L. Guz, R. Candal, S. Goyanes. (2020). Active bilayer films based on cassava starch incorporating ZnO nanorods and PVA electrospun mats containing rosemary extract. Food Hydrocolloids, 108, 106054.
[42] S. M. Eskandarabadi, M. Mahmoudian, K. R. Farah, A. Abdali, E. Nozad, M. Enayati. (2019). Active intelligent packaging film based on ethylene vinyl acetate nanocomposite containing extracted anthocyanin, rosemary extract and ZnO/Fe-MMT nanoparticles. Food Packaging and Shelf Life, 22, 100389.
[43] H. Dehghan, Y. Sarrafi, P. Salehi. (2016). Antioxidant and antidiabetic activities of 11 herbal plants from Hyrcania region, Iran. Journal of Food and Drug Analysis, 24(1), 179-188.
[44] Z. Abbaspour, K. Jaimand, S. Mozaffari. (2015). Comparison of Essential Oils Compositions of Eryngo (Eryngium caucasicum) in Different Parts of Plant in Two Growth Conditions. Journal of Medicinal plants and By-product, 4(1), 83-98.
[45] S. M. Nabavi, M. Ebrahimzadeh, S. F. Nabavi, M. Jafari. (2008). Free radical scavenging activity and antioxidant capacity of Eryngium caucasicum Trautv and Froripia subpinata. Pharmacologyonline, 3, 19-25.
[46] N. Noshirvani, B. Ghanbarzadeh, R. R. Mokarram, M. Hashemi, V. Coma. (2017). Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles. International Journal of Biological Macromolecules, 99, 530-538.
[47] T. Xu, C. Gao, X. Feng, Y. Yang, X. Shen, X. Tang. (2019). Structure, physical and antioxidant properties of chitosan-gum arabic edible films incorporated with cinnamon essential oil. International Journal of Biological Macromolecules, 134, 230-236.
[48] S. F. Hosseini, M. Rezaei, M. Zandi, F. Farahmandghavi. (2016). Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food chemistry, 194, 1266-1274.
[49] V. Siracusa, S. Romani, M. Gigli, C. Mannozzi, J. P. Cecchini, U. Tylewicz, N. Lotti. (2018). Characterization of Active Edible Films based on Citral Essential Oil, Alginate and Pectin. Materials, 11(10).
[50] J. Wu, X. Sun, X. Guo, S. Ge, Q. Zhang. (2017). Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquaculture and Fisheries, 2(4), 185-192.
[51] A. Sadeghi-Varkani, Z. Emam-Djomeh, G. Askari. (2018). Physicochemical and microstructural properties of a novel edible film synthesized from Balangu seed mucilage. International Journal of Biological Macromolecules, 108, 1110-1119.
[52] F. M. Pelissari, M. V. E. Grossmann, F. Yamashita, E. A. G. Pineda. (2009). Antimicrobial, Mechanical, and Barrier Properties of Cassava Starch−Chitosan Films Incorporated with Oregano Essential Oil. Journal of agricultural and food chemistry, 57(16), 7499-7504.
[53] N. Noshirvani, B. Ghanbarzadeh, C. Gardrat, M. R. Rezaei, M. Hashemi, C. Le Coz, V. Coma. (2017). Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocolloids, 70, 36-45.
[54] L. Cao, W. Liu, L. Wang. (2018). Developing a green and edible film from Cassia gum: The effects of glycerol and sorbitol. Journal of Cleaner Production, 175, 276-282.
[55] S. Sanuja, A. Agalya, M. J. Umapathy. (2015). Synthesis and characterization of zinc oxide–neem oil–chitosan bionanocomposite for food packaging application. International Journal of Biological Macromolecules, 74, 76-84.
[56] Q. Ma, D. Hu, H. Wang, L. Wang. (2016). Tara gum edible film incorporated with oleic acid. Food Hydrocolloids, 56, 127-133.
[57] S. M. A. Razavi, A. Mohammad Amini, Y. Zahedi. (2015). Characterisation of a new biodegradable edible film based on sage seed gum: Influence of plasticiser type and concentration. Food Hydrocolloids, 43, 290-298.
[58] R. Akhter, F. A. Masoodi, T. A. Wani, S. A. Rather. (2019). Functional characterization of biopolymer based composite film: Incorporation of natural essential oils and antimicrobial agents. International Journal of Biological Macromolecules, 137, 1245-1255.
[59] Y. Chu, T. Xu, C. Gao, X. Liu, N. Zhang, X. Feng, X. Liu, X. Shen, X. Tang. (2019). Evaluations of physicochemical and biological properties of pullulan-based films incorporated with cinnamon essential oil and Tween 80. International Journal of Biological Macromolecules, 122, 388-394.