[1]Bhat, S. A., Hassan, T., & Majid, S. (2019). Heavy metal toxicity and their harmful effects on living organisms–a review. International Journal of Medical Science And Diagnosis Research, 3(1), 106-122.
[2]Flora, S. J. S. (2009). Metal poisoning: threat and management. Al Ameen J Med Sci, 2(2), 4-26.
[3]Lentini, P., Zanoli, L., Granata, A., Signorelli, S. S., Castellino, P., & Dellaquila, R. (2017). Kidney and heavy metals-The role of environmental exposure. Molecular medicine reports, 15(5), 3413-3419.
[4]Paknikar, K. M., Pethkar, A. V., & Puranik, P. R. (2003). Bioremediation of metalliferous wastes and products using inactivated microbial biomass.
[5]Syed, S., & Chinthala, P. (2015). Heavy metal detoxification by different Bacillus species isolated from solar salterns. Scientifica, 2015(1), 319760.
[6]R. H. S. F. Vieira and B. Volesky, “Biosorption: a solution to pollution?” International Microbiology, vol. 3, no. 1, pp. 17–24,
2000.
[7]Yin, K., Wang, Q., Lv, M., & Chen, L. (2019). Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal, 360, 1553-1563.
[8]Chen, R., Tu, H., & Chen, T. (2022). Potential application of living microorganisms in the detoxification of heavy metals. Foods, 11(13), 1905.
[9]Monachese, M., Burton, J. P., & Reid, G. (2012). Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics?. Applied and environmental microbiology, 78(18), 6397-6404.
[10]Halttunen, T., Salminen, S., & Tahvonen, R. (2007). Rapid removal of lead and cadmium from water by specific lactic acid bacteria. International journal of food microbiology, 114(1), 30-35.
[11]Massoud, R., Hadiani, M. R., Hamzehlou, P., & Khosravi-Darani, K. (2019). Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae. Electronic Journal of Biotechnology, 37, 56-60.
[12]Ahmed, S., Islam, M. R., Ferdousi, J., & Iqbal, T. S. (2017). Probiotic Lactobacillus sp. with bioremediation potential of toxic heavy metals. Bangladesh J. Microbiol, 34(1), 43-6.
[13]Kirillova, A. V., Danilushkina, A. A., Irisov, D. S., Bruslik, N. L., Fakhrullin, R. F., Zakharov, Y. A., ... & Yarullina, D. R. (2017). Assessment of resistance and bioremediation ability of Lactobacillus strains to lead and cadmium. International journal of microbiology, 2017(1), 9869145.
[14]Ibrahim, F., Halttunen, T., Tahvonen, R., & Salminen, S. (2006). Probiotic bacteria as potential detoxification tools: assessing their heavy metal binding isotherms. Canadian journal of microbiology, 52(9), 877-885.
[15]Kaveh, S., Sadeghi, M.A., Ghorbani, M., Jafari, M., Sarabandi, K. (2019). Optimization of production of antioxidant peptides using enzymatic hydrolysis of fenugreek seed. Journal of Food Science and Technology, 15 (84), pp. 75-88
[16]Hashemi, S. M. B., Kaveh, S., & Abedi, E. (2023). Microscopic monitoring of the antibacterial potential of Nepeta elymaitica Bornm essential oil against kohlrabi leaves’ foodborne pathogens. Lwt, 188, 115403.
[17]Mrvčić, J., Stanzer, D., Šolić, E., & Stehlik-Tomas, V. (2012). Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World Journal of Microbiology and Biotechnology, 28(9), 2771-2782.
[18]Elsanhoty, R. M., Al-Turki, I. A., & Ramadan, M. F. (2016). Application of lactic acid bacteria in removing heavy metals and aflatoxin B1 from contaminated water. Water Science and technology, 74(3), 625-638.
[19]Bhakta, J. N., Ohnishi, K., Munekage, Y., Iwasaki, K., & Wei, M. Q. (2012). Characterization of lactic acid bacteria‐based probiotics as potential heavy metal sorbents. Journal of applied microbiology, 112(6), 1193-1206.
[20] Teemu, H., Seppo, S., Jussi, M., Raija, T., & Kalle, L. (2008). Reversible surface binding of cadmium and lead by lactic acid and bifidobacteria. International journal of food microbiology, 125(2), 170-175.
[21] Cho, D. H., & Kim, E. Y. (2003). Characterization of Pb 2+ biosorption from aqueous solution by Rhodotorula glutinis. Bioprocess and Biosystems Engineering, 25, 271-277.
[22]Mrvčić, J., Prebeg, T., Barišić, L., Stanzer, D., Bačun-Družina, V., & Stehlik-Tomas, V. (2009). Zinc Binding by Lactic Acid Bacteria. Food Technology & Biotechnology, 47(4).
[23]Lu, W. B., Kao, W. C., Shi, J. J., & Chang, J. S. (2008). Exploring multi-metal biosorption by indigenous metal-hyperresistant Enterobacter sp. J1 using experimental design methodologies. Journal of hazardous materials, 153(1-2), 372-381.