بهینه سازی شرایط واکنش تولید نشاسته گندم فسفریله توسط تری‌متافسفات سدیم (STMP) به منظور استفاده در فرمولاسیون انواع سس

نویسندگان
1 دانشجوی دکتری گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی، مشهد، ایران.
2 استادیار، گروه پژوهشی فراوری مواد غذایی، پژوهشکده علوم و فناوری مواد غذایی جهاد دانشگاهی خراسان رضوی، مشهد، ایران
3 استادیار، گروه پژوهشی فراوری مواد غذایی، پژوهشکده علوم و فناوری مواد غذایی جهاد دانشگاهی خراسان رضوی، مشهد، ایران.
4 مربی، گروه پژوهشی فراوری مواد غذایی، پژوهشکده علوم و فناوری مواد غذایی جهاد دانشگاهی خراسان رضوی، مشهد، ایران.
5 دانشیار، گروه پژوهشی فراوری مواد غذایی، پژوهشکده علوم و فناوری مواد غذایی جهاد دانشگاهی خراسان رضوی، مشهد، ایران.
چکیده
نشاسته به دلیل مقرون به صرفه بودن، ایمنی بالا و زیست تخریب پذیری، در صنایع مختلف غذایی و غیرغذایی به طور گسترده مورد استفاده قرار می گیرد. اگرچه، ویژگی‌های ی مانند نامحلول بودن در آب سرد، عدم تحمل گرما، مقاومت کم نسبت به تنش های اعمالی و پایداری انجماد- ذوب کم، کاربرد نشاسته طبیعی برای مصارف مختلف صنعتی را محدود می‌کند. نشاسته گندم یکی از رایج ترین انواع نشاسته در بسیاری از کشورها به ویژه ایران است و می‌توان آن را برای کاربرد در محصولات مختلف اصلاح کرد. یکی از کارآمدترین تکنیک ها برای اصلاح نشاسته، اصلاح شیمیایی است، اما نگرانی هایی را در مورد آلودگی محیط زیست و هزینه های بالای مواد شیمیایی ایجاد می‌کند. به همین دلیل در این مطالعه به منظور کاهش مصرف مواد شیمیایی، شرایط واکنش تولید نشاسته فسفریله با تری­متافسفات سدیم (STMP) با استفاده از سه متغییر مستقل pH(5/9، 5/10 و 5/11)، دما (110، 130 و 150 درجه سانتی گراد) و غلظت واکنشگر (5/1، 3 و 5/4 درصد)، بهینه­ سازی شد. ملاک بهینه­سازی وجود شاخص تورم و حلالیت بالاتر، شفافیت بالاتر خمیر، سینرسیس کمتر ژل و پایداری انجمادذوب بالاتر به منظور استفاده در انواع سس انتخاب گردید. سپس به منظور بررسی خصوصیات ساختاری، حرارتی و خمیری شدن، آزمون‌های تکمیلی بر نمونه نشاسته بهینه و طبیعی انجام شد؛ نتایج نشان داد که نشاسته تولید شده تحت شرایط بهینه به دلیل بهبود ویژگی بافتی، ایجاد ویسکوزیته بالاتر و افزایش تحمل گرما برای استفاده در فرمولاسیون انواع سس ها مناسب می‌باشد.

 
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimizing reaction conditions for the production of phosphorylated wheat starch by sodium trimetaphosphate (STMP) in order to be used in the formulation of sauces

نویسندگان English

Mohammadkazem Heydarian 1
majid hashemi 2
Shahram Beiraghi-Toosi 3
Qulamali Goli-Movahhed 4
الناز Milani 5
1 Department of Food Science, Faculty of Agricultural Engineering and Technology, Ferdowsi University of Mashhad, Mashhad, Iran .
2 Assistant Professor, Food processingresearch department, Food science and technology research institute, Academic Center forEducation Culture and Research (ACECR), Mashhad, Iran.
3 Assistant Professor, Food processing research department,Food science and technology research institute,Academic Center for Education Culture and Research (ACECR), Mashhad, Iran.
4 Food processing research department, Food science and technology research institute, Academic Center for Education Culture and Research (ACECR), Mashhad, Iran.
5 Associate Professor, Food processing research department, Food science and technology research institute, Academic Center for Education Culture and Research (ACECR), Mashhad, Iran.
چکیده English

Wheat starch is the most common type of starch in many countries and can be modified to produce a variety of starches. The widespread use of starch offers many opportunities in various industries due to its affordability, high safety and biodegradability. However, characteristics such as insolubility in cold water, heat intolerance, low resistance to applied stresses, and low freeze-thaw stability limit the use of natural starch for various industrial uses. One of the most efficient techniques for starch modification is chemical modification, but it raises concerns about environmental pollution and high chemical costs. For this reason, in this study, in order to reduce the consumption of chemicals, the reaction conditions for the production of phosphorylated starch with sodium trimetaphosphate (STMP) using three independent variables: pH (9.5, 10.5 and 11.5), temperature (110, 130 and 150 degrees Celsius) and reactant concentration (1.5, 3 and 4.5%) were optimized. According to the results of the physicochemical tests, the optimization criteria of starch used in all kinds of sauces with higher swelling and solubility index, higher dough transparency, less gel syneresis and higher freeze-thaw stability were selected. Then, in order to check the structural, thermal and pasting properties, additional tests were performed on selected and natural starch samples; The results showed that the starch produced under optimal conditions is suitable for use in the formulation of all kinds of sauces due to improved textural properties, higher viscosity and increased heat tolerance.

کلیدواژه‌ها English

Wheat starch
Phosphorylation
Pasting
Sauce
[1] Babić, J., et al., Effects of pectin and carrageenan on thermophysical and rheological properties of tapioca starch. Czech Journal of Food Sciences, 2006. 24(6): p. 275.
[2] Majzoubi, M., et al., Physico-chemical properties of phosphoryl chloride cross-linked wheat starch. 2009.
[3] Tester, R.F., J. Karkalas, and X. Qi, Starch—composition, fine structure and architecture. Journal of cereal science, 2004. 39(2): p. 151-165.
[4] Guo, Z., et al., Structural and physicochemical properties of lotus seed starch treated with ultra-high pressure. Food chemistry, 2015. 186: p. 223-230.
[5] Man, J., et al., Comparison of physicochemical properties of starches from seed and rhizome of lotus. Carbohydrate Polymers, 2012. 88(2): p. 676-683.
[6] Guo, et al., Effect of ultra high pressure processing on the particle characteristics of lotus-seed starch. Chinese Journal of Structural Chemistry, 2013(4): p. 525-532.
[7] Copeland, L., et al., Form and functionality of starch. Food hydrocolloids, 2009. 23(6): p. 1527-1534.
[8] Singh, J., L. Kaur, and O. McCarthy, Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food hydrocolloids, 2007. 21(1): p. 1-22.
[9] Kaur, B., et al., Progress in starch modification in the last decade. Food hydrocolloids, 2012. 26(2): p. 398-404.
[10] Jayakody, L. and R. Hoover, The effect of lintnerization on cereal starch granules. Food Research International, 2002. 35(7): p. 665-680.
[11] Heo, H., Y.-K. Lee, and Y.H. Chang, Rheological, pasting, and structural properties of potato starch by cross-linking. International journal of food properties, 2017. 20(sup2): p. 2138-2150.
[12] Wang, X., et al., Research advances in chemical modifications of starch for hydrophobicity and its applications: A review. Carbohydrate polymers, 2020. 240: p. 116292.
[13] Chung, H.-J., K.-S. Woo, and S.-T. Lim, Glass transition and enthalpy relaxation of cross-linked corn starches. Carbohydrate polymers, 2004. 55(1): p. 9-15.
[14] Gui‐Jie, M., et al., Crosslinking of corn starch with sodium trimetaphosphate in solid state by microwave irradiation. Journal of applied polymer science, 2006. 102(6): p. 5854-5860.
[15] Chen, Y.-F., L. Kaur, and J. Singh, Chemical modification of starch, in Starch in food. 2018, Elsevier. p. 283-321.
[16] Horwitz, W. and G.W. Latimer, Official methods of analysis of AOAC International. Vol. 1. 2000: AOAC international Gaithersburg.
[17] Lim, S. and P. Seib, Preparation and pasting properties of wheat and corn starch phosphates. Cereal chemistry, 1993. 70: p. 137-137.
[18] McGrance, S.J., H.J. Cornell, and C.J. Rix, A simple and rapid colorimetric method for the determination of amylose in starch products. Starch‐Stärke, 1998. 50(4): p. 158-163.
[19] Jackson, M.L., Soil chemical analysis: advanced course: a manual of methods useful for instruction and research in soil chemistry, physical chemistry of soils, soil fertility, and soil genesis. 2005: UW-Madison Libraries parallel press.
[20] Leach, H.W., Structure of starch granule I. Swelling and solubility patterns of various starches. J. Cereal Chem., 1959. 36: p. 534-544.
[21] Mandala, I. and E. Bayas, Xanthan effect on swelling, solubility and viscosity of wheat starch dispersions. Food Hydrocolloids, 2004. 18(2): p. 191-201.
[22] Ehtiati, A., et al., Pasting, rheological, and retrogradation properties of starches from dual‐purpose sorghum lines. Starch‐Stärke, 2017. 69(7-8): p. 1600262.
[23] Dutta, H., et al., Effect of acid concentration and treatment time on acid–alcohol modified jackfruit seed starch properties. Food chemistry, 2011. 128(2): p. 284-291.
[24] Reddy, I. and P.A. Seib, Paste properties of modified starches from partial waxy wheats. Cereal Chemistry, 1999. 76(3): p. 341-349.
[25] Pozo, C., et al., Study of the structural order of native starch granules using combined FTIR and XRD analysis. Journal of Polymer Research, 2018. 25: p. 1-8.
[26] Pascoal, A.M., et al., Extraction and chemical characterization of starch from S. lycocarpum fruits. Carbohydrate polymers, 2013. 98(2): p. 1304-1310.
[27] Singh, H., N.S. Sodhi, and N. Singh, Characterisation of starches separated from sorghum cultivars grown in India. Food chemistry, 2010. 119(1): p. 95-100.
[28] Committee, A.A.o.C.C.A.M., Approved methods of the American association of cereal chemists. Vol. 1. 2000: American Association of Cereal Chemists.
[29] Pons, M. and S. Fiszman, Instrumental texture profile analysis with particular reference to gelled systems. Journal of texture studies, 1996. 27(6): p. 597-624.
[30] Sasaki, T., et al., Comparison of physical properties of wheat starch gels with different amylose content. Cereal chemistry, 2002. 79(6): p. 861-866.
[31] Radi, M., et al., The effect of freezing-assisted cross-linking on structural and rheological properties of potato starch. International Journal of Biological Macromolecules, 2022. 222: p. 2775-2784.
[32] Olawoye, B., et al., Understanding how different modification processes affect the physiochemical, functional, thermal, morphological structures and digestibility of cardaba banana starch. International journal of biological macromolecules, 2022. 201: p. 158-172.
[33] Kaur, L., J. Singh, and N. Singh, Effect of cross‐linking on some properties of potato (Solanum tuberosum L.) starches. Journal of the Science of Food and Agriculture, 2006. 86(12): p. 1945-1954.
[34] Iweajunwa, S., O. Achugasim, and R. Ogali, Effects of acetylation, carboxymethylation and crosslinking on some physicochemical properties of starch from tubers of Icacina senegalensis and Cyrtosperma senegalense. Scientia Africana, 2023. 22(1): p. 75-84.
[35] Singh, A. and L. Nath, Evaluation of binder property of Moth bean starch in compressed solid dosage form. International Journal of PharmTech Research, 2009. 1(2): p. 365-368.
[36] Hirsch, J.B. and J.L. Kokini, Understanding the mechanism of cross‐linking agents (POCl3, STMP, and EPI) through swelling behavior and pasting properties of cross‐linked waxy maize starches. Cereal chemistry, 2002. 79(1): p. 102-107.
[37] Liu, C., et al., Influence of phosphorylation and acetylation on structural, physicochemical and functional properties of chestnut starch. Polymers, 2022. 14(1): p. 172.
[38] Mehfooz, T., et al., Characterization of hydroxypropylated-distarch phosphate barley starch and its impact on rheological and sensory properties of soup. International journal of biological macromolecules, 2020. 144: p. 410-418.
[39] Chandak, A., et al., Effects of cross-linking on physicochemical and film properties of lotus (Nelumbo nucifera G.) Seed Starch. Foods, 2022. 11(19): p. 3069.
[40] Sriprablom, J., et al., Effect of single and dual modifications with cross-linking and octenylsuccinylation on physicochemical, in-vitro digestibility, and emulsifying properties of cassava starch. Food Research International, 2023. 163: p. 112304.
[41] Luo, Y., et al., Improvement in Freeze‐Thaw Stability of Rice Starch by Soybean Protein Hydrolysates‐Xanthan Gum Blends and its Mechanism. Starch‐Stärke, 2022. 74(1-2): p. 2100193.
[42] Xiaofan, L., Y. Chen, and W. Zhou, Effect of cross-linking with sodium trimetaphosphate on structural and physicochemical properties of tigernut starch. Food Science and Technology, 2022. 42: p. e76422.
[43] Oh, S.-M., et al., Physicochemical and retrogradation properties of modified chestnut starches. Food science and biotechnology, 2019. 28: p. 1723-1731.
[44] Nakkala, K., et al., Chemical modifications of turmeric starch by oxidation, phosphorylation, and succinylation. Starch‐Stärke, 2022. 74(9-10): p. 2200053.
[45] Kim, C.T., et al., Effects of phosphorylating salts and temperature on the preparation of rice starch phosphates by extrusion. Starch‐Stärke, 1999. 51(8‐9): p. 280-286.
[46] Muhammad, K., et al., Effect of pH on phosphorylation of sago starch. Carbohydrate Polymers, 2000. 42(1): p. 85-90.
[47] Hazarika, B.J. and N. Sit, Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch. Carbohydrate polymers, 2016. 140: p. 269-278.
[48] Ačkar, Đ., et al., Isolation of starch from two wheat varieties and their modification with epichlorohydrin. Carbohydrate polymers, 2010. 81(1): p. 76-82.
[49] Sharma, V., et al., Effect of cross-linking on physico-chemical, thermal, pasting, in vitro digestibility and film forming properties of Faba bean (Vicia faba L.) starch. International journal of biological macromolecules, 2020. 159: p. 243-249.
[50] Majzoobi, M., et al., Physicochemical properties of cross-linked wheat starch affected by L-ascorbic acid. Journal of Agricultural Science and Technology, 2014. 16(2): p. 355-364.
[51] Miles, M.J., et al., The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydrate research, 1985. 135(2): p. 271-281.
[52] Mua, J. and D. Jackson, Relationships between functional attributes and molecular structures of amylose and amylopectin fractions from corn starch. Journal of Agricultural and Food Chemistry, 1997. 45(10): p. 3848-3854.
[53] Chen, B., et al., Physicochemical properties and micro-structural characteristics in starch from kudzu root as affected by cross-linking. Food chemistry, 2017. 219: p. 93-101.
[54] Karmvir, G., et al., Physico-chemical, textural and crystallinity properties of oxidized, cross-linked and dual-modified white sorghum starch. International Food Research Journal, 2018. 25(5): p. 2104-2111.
[55] Peng, H., et al., Soluble starch–based biodegradable and microporous microspheres as potential adsorbent for stabilization and controlled release of coix seed oil. European Food Research and Technology, 2011. 232: p. 693-702.
[56] Gao, F., et al., Preparation and characterization of starch crosslinked with sodium trimetaphosphate and hydrolyzed by enzymes. Carbohydrate polymers, 2014. 103: p. 310-318.
[57] Shalviri, A., et al., Novel modified starch–xanthan gum hydrogels for controlled drug delivery: Synthesis and characterization. Carbohydrate Polymers, 2010. 79(4): p. 898-907.
[58] Jyothi, A.N., S.N. Moorthy, and K.N. Rajasekharan, Effect of cross‐linking with epichlorohydrin on the properties of cassava (Manihot esculenta Crantz) starch. Starch‐Stärke, 2006. 58(6): p. 292-299.
[59] Sang, Y., O. Prakash, and P.A. Seib, Characterization of phosphorylated cross-linked resistant starch by 31P nuclear magnetic resonance (31P NMR) spectroscopy. Carbohydrate Polymers, 2007. 67(2): p. 201-212.
[60] Soler, A., et al., Double helical order and functional properties of acid-hydrolyzed maize starches with different amylose content. Carbohydrate research, 2020. 490: p. 107956.
[61] Zhou, D., et al., Structural characteristics and physicochemical properties of field pea starch modified by physical, enzymatic, and acid treatments. Food Hydrocolloids, 2019. 93: p. 386-394.
[62] Ahmad, M., et al., Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. Scientific Reports, 2020. 10(1): p. 3533.
[63] Carmona-Garcia, R., et al., Effect of the cross-linked reagent type on some morphological, physicochemical and functional characteristics of banana starch (Musa paradisiaca). Carbohydrate Polymers, 2009. 76(1): p. 117-122.
[64] Sharma, V., et al., Barnyard millet starch cross-linked at varying levels by sodium trimetaphosphate (STMP): film forming, physico-chemical, pasting and thermal properties. Carbohydrate Polymer Technologies and Applications, 2021. 2: p. 100161.
[65] Olayemi, B., et al., Green preparation of citric acid crosslinked starch for improvement of physicochemical properties of Cyperus starch. Turkish journal of pharmaceutical sciences, 2021. 18(1): p. 34.
[66] Dong, H. and T. Vasanthan, Amylase resistance of corn, faba bean, and field pea starches as influenced by three different phosphorylation (cross-linking) techniques. Food Hydrocolloids, 2020. 101: p. 105506.
[67] Punia, S., et al., Pearl millet grain as an emerging source of starch: A review on its structure, physicochemical properties, functionalization, and industrial applications. Carbohydrate polymers, 2021. 260: p. 117776.
[68] Sharma, V., et al., Physicochemical and Rheological Properties of Cross‐Linked Litchi Kernel Starch and Its Application in Development of Bio‐Films. Starch‐Stärke, 2021. 73(7-8): p. 2100049.
[69] Aaliya, B., et al., Impact of microwave irradiation on chemically modified talipot starches: A characterization study on heterogeneous dual modifications. International Journal of Biological Macromolecules, 2022. 209: p. 1943-1955.
[70] Wongsagonsup, R., et al., Effect of cross-linking on physicochemical properties of tapioca starch and its application in soup product. Carbohydrate polymers, 2014. 101: p. 656-665.
[71] Luo, F.-x., et al., Preparation and characterisation of crosslinked waxy potato starch. Food Chemistry, 2009. 115(2): p. 563-568.
[72] Sudheesh, C., et al., Effect of dual modification with annealing, heat moisture treatment and cross-linking on the physico-chemical, rheological and in vitro digestibility of underutilised kithul (Caryota urens) starch. Journal of Food Measurement and Characterization, 2020. 14: p. 1557-1567.
[73] Jia, S., et al., Physicochemical Properties and In Vitro Digestibility of Dual‐Modified Starch by Cross‐Linking and Annealing. Starch‐Stärke, 2022. 74(1-2): p. 2100102.
[74] Dong, H. and T. Vasanthan, Effect of phosphorylation techniques on structural, thermal, and pasting properties of pulse starches in comparison with corn starch. Food Hydrocolloids, 2020. 109: p. 106078.
[75] Van Hung, P. and N. Morita, Physicochemical properties of hydroxypropylated and cross-linked starches from A-type and B-type wheat starch granules. Carbohydrate polymers, 2005. 59(2): p. 239-246.
[76] Siroha, A.K. and K.S. Sandhu, Physicochemical, rheological, morphological, and in vitro digestibility properties of cross-linked starch from pearl millet cultivars. International Journal of Food Properties, 2018. 21(1): p. 1371-1385.
[77] Koo, S.H., K.Y. Lee, and H.G. Lee, Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food hydrocolloids, 2010. 24(6-7): p. 619-625.