بهینه سازی شرایط واکنش تولید نشاسته گندم فسفریله به منظور استفاده در فرمولاسیون کنسروها

نویسندگان
1 دانشجوی دکتری گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی، مشهد، ایر ان.
2 استادیار، گروه پژوهشی فراوری مواد غذایی، پژوهشکده علوم و فناوری مواد غذایی جهاد دانشگاهی خراسان رضوی، مشهد، ایران.
3 دانشیار، گروه پژوهشی فراوری مواد غذایی، پژوهشکده علوم و فناوری مواد غذایی جهاد دانشگاهی خراسان رضوی، مشهد، ایران.
4 مربی، گروه پژوهشی فراوری مواد غذایی، پژوهشکده علوم و فناوری مواد غذایی جهاد دانشگاهی خراسان رضوی، مشهد، ایر ان
چکیده
گندم یکی از محصولات زراعی اصلی ایران است که بخش اعظم این غله از نشاسته و پروتئین تشکیل شده است. استفاده گسترده از نشاسته به دلیل قیمت مناسب، ایمنی بالا و قابلیت زیست تخریب پذیری، در صنایع مختلف امکانات بسیاری را فراهم می‌کند. با این حال، نشاسته طبیعی به دلیل محدودیت هایی مانند نامحلول بودن در آب سرد و عدم تحمل گرما برای کاربردهای صنعتی مختلف نیاز به اصلاح دارد. از این رو، اصلاح نشاسته گندم به منظور بهبود ویژگی‌ها و کاهش وابستگی به واردات نشاسته‌های اصلاح شده ضروری است. اصلاح شیمیایی یکی از تکنیک‌های اصلاح نشاسته است که بیشترین کارایی را از خود نشان داده است، اما با دغدغه‌هایی نظیر آلودگی محیط زیست و هزینه‌های بالای مواد شیمیایی همراه است. در این مطالعه شرایط واکنش تولید نشاسته فسفریله با اکسی کلراید (Pocl3) با استفاده از سه متغییر مستقل pH(5/9، 5/10 و 5/11)، دما (25، 35 و 45 درجه سانتی گراد) و غلظت واکنشگر (03/0، 075/0 و 12/0 درصد)، بهینه­سازی شد. با توجه به نتایج آزمون های فیزیکوشیمیایی ملاک بهینه­سازی نشاسته مورد استفاده در محصولات کنسروی با شاخص تورم و حلالیت بالاتر، شفافیت بالا خمیر، سینرسیس کمتر ژل و پایداری انجمادذوب بالاتر انتخاب گردید سپس آزمون های تکمیلی به منظور بررسی خصوصیات ساختاری، حرارتی و خمیری شدن بر نمونه نشاسته انتخاب شده و طبیعی انجام شد؛ نتایج نشان داد که فسفریلاسیون از طریق بهبود ویژگی بافتی، ایجاد ویسکوزیته بالاتر و افزایش تحمل گرما، نشاسته اصلاح شده حاصل را برای استفاده در فرمولاسیون محصولات کنسروی مناسب ساخت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimizing reaction conditions for the production of phosphorylated wheat starch in order to be used in the formulation of canned foods

چکیده English

Wheat is one of the main crops of Iran, most of which consists of starch and protein. The widespread use of starch provides many possibilities in various industries due to its reasonable price, high safety and biodegradability. However, natural starch needs to be modified for various industrial applications due to limitations such as insolubility in cold water and heat intolerance. Therefore, it is necessary to modify wheat starch in order to improve its properties and reduce the dependence on the import of modified starches. Chemical modification is one of the most efficient starch modification techniques, but it is associated with concerns such as environmental pollution and high costs of chemicals. In this study, the reaction conditions for the production of phosphorylated starch with oxychloride (Pocl3) using three independent variables of pH (9.5, 10.5 and 11.5), temperature (25, 35 and 45 degrees Celsius) and reactant concentration ( 0.03, 0.075 and 0.12 percent), were optimized. According to the results of the physicochemical tests, the optimization criteria of starch used in canned products with higher swelling and solubility index, high transparency of dough, less gel syneresis, and higher freeze-thaw stability were selected, then additional tests were carried out in order to check structural and thermal properties. and pulping was done on selected and natural starch sample; The results showed that phosphorylation made the resulting modified starch suitable for use in the formulation of canned products by improving textural characteristics, creating higher viscosity and increasing heat tolerance.

کلیدواژه‌ها English

Gelatination
Canned products
Phosphorylation
Wheat starch
[1] Alcázar-Alay, S.C. and M.A.A. Meireles, Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology, 2015. 35: p. 215-236.
[2] Majzoobi, M. and A. Farahnaky, Granular cold-water swelling starch; properties, preparation and applications, a review. Food hydrocolloids, 2021. 111: p. 106393.
[3] Laovachirasuwan, P., et al., The physicochemical properties of a spray dried glutinous rice starch biopolymer. Colloids and Surfaces B: Biointerfaces, 2010. 78(1): p. 30-35.
[4] Kaur, B., et al., Progress in starch modification in the last decade. Food hydrocolloids, 2012. 26(2): p. 398-404.
[5] Joshi, M., et al., Physicochemical and functional characteristics of lentil starch. Carbohydrate polymers, 2013. 92(2): p. 1484-1496.
[6] Hu, A., Y. Li, and J. Zheng, Dual-frequency ultrasonic effect on the structure and properties of starch with different size. Lwt, 2019. 106: p. 254-262.
[7] Thirumdas, R., D. Kadam, and U. Annapure, Cold plasma: An alternative technology for the starch modification. Food Biophysics, 2017. 12: p. 129-139.
[8] Neelam, K., S. Vijay, and S. Lalit, Various techniques for the modification of starch and the applications of its derivatives. International research journal of pharmacy, 2012. 3(5): p. 25-31.
[9] Chen, X., et al., The effect of ethanol solution annealing on the physicochemical properties of pea and potato starches. Food Hydrocolloids, 2022. 125: p. 107428.
[10] Chaiwat, W., et al., Argon plasma treatment of tapioca starch using a semi-continuous downer reactor. Food and Bioprocess Technology, 2016. 9: p. 1125-1134.
[11] Sjöö, M. and L. Nilsson, Starch in food: Structure, function and applications. 2017: Woodhead Publishing.
[12] Jyothi, A.N., S.N. Moorthy, and K.N. Rajasekharan, Effect of cross‐linking with epichlorohydrin on the properties of cassava (Manihot esculenta Crantz) starch. Starch‐Stärke, 2006. 58(6): p. 292-299.
[13] Huber, K. and J. BeMiller, Modified starch: chemistry and properties. Starches: characterization, properties, and applications. CRC Press, Boca Raton, FL, 2010: p. 145-203.
[14] Wei, M., et al., Preparation and application of starch phosphate with a low degree of substitution. Phosphorus, Sulfur, and Silicon and the Related Elements, 2011. 186(4): p. 974-982.
[15] Horwitz, W. and G.W. Latimer, Official methods of analysis of AOAC International. Vol. 1. 2000: AOAC international Gaithersburg.
[16] Sui, Z., K.C. Huber, and J.N. BeMiller, Effects of the order of addition of reagents and catalyst on modification of maize starches. Carbohydrate polymers, 2013. 96(1): p. 118-130.
[17] McGrance, S.J., H.J. Cornell, and C.J. Rix, A simple and rapid colorimetric method for the determination of amylose in starch products. Starch‐Stärke, 1998. 50(4): p. 158-163.
[18] Jackson, M.L., Soil chemical analysis: advanced course: a manual of methods useful for instruction and research in soil chemistry, physical chemistry of soils, soil fertility, and soil genesis. 2005: UW-Madison Libraries parallel press.
[19] Leach, H.W., Structure of starch granule I. Swelling and solubility patterns of various starches. J. Cereal Chem., 1959. 36: p. 534-544.
[20] Mandala, I. and E. Bayas, Xanthan effect on swelling, solubility and viscosity of wheat starch dispersions. Food Hydrocolloids, 2004. 18(2): p. 191-201.
[21] Ehtiati, A., et al., Pasting, rheological, and retrogradation properties of starches from dual‐purpose sorghum lines. Starch‐Stärke, 2017. 69(7-8): p. 1600262.
[22] Dutta, H., et al., Effect of acid concentration and treatment time on acid–alcohol modified jackfruit seed starch properties. Food chemistry, 2011. 128(2): p. 284-291.
[23] Reddy, I. and P.A. Seib, Paste properties of modified starches from partial waxy wheats. Cereal Chemistry, 1999. 76(3): p. 341-349.
[24] Pozo, C., et al., Study of the structural order of native starch granules using combined FTIR and XRD analysis. Journal of Polymer Research, 2018. 25: p. 1-8.
[25] Pascoal, A.M., et al., Extraction and chemical characterization of starch from S. lycocarpum fruits. Carbohydrate polymers, 2013. 98(2): p. 1304-1310.
[26] Singh, H., N.S. Sodhi, and N. Singh, Characterisation of starches separated from sorghum cultivars grown in India. Food chemistry, 2010. 119(1): p. 95-100.
[27] Committee, A.A.o.C.C.A.M., Approved methods of the American association of cereal chemists. Vol. 1. 2000: American Association of Cereal Chemists.
[28] Pons, M. and S. Fiszman, Instrumental texture profile analysis with particular reference to gelled systems. Journal of texture studies, 1996. 27(6): p. 597-624.
[29] Sasaki, T., et al., Comparison of physical properties of wheat starch gels with different amylose content. Cereal chemistry, 2002. 79(6): p. 861-866.
[30] Wongsagonsup, R., et al., Effect of cross-linking on physicochemical properties of tapioca starch and its application in soup product. Carbohydrate polymers, 2014. 101: p. 656-665.
[31] Hwang, D.K., B.Y. Kim, and M.Y. Baik, Physicochemical properties of non‐thermally cross‐linked corn starch with phosphorus oxychloride using ultra high pressure (UHP). Starch‐Stärke, 2009. 61(8): p. 438-447.
[32] Kaur, L., J. Singh, and N. Singh, Effect of cross‐linking on some properties of potato (Solanum tuberosum L.) starches. Journal of the Science of Food and Agriculture, 2006. 86(12): p. 1945-1954.
[33] Wang, Y.-J., V.-D. Truong, and L. Wang, Structures and rheological properties of corn starch as affected by acid hydrolysis. Carbohydrate Polymers, 2003. 52(3): p. 327-333.
[34] Liu, H., L. Ramsden, and H. Corke, Physical properties and enzymatic digestibility of phosphorylated ae, wx, and normal maize starch prepared at different pH levels. Cereal chemistry, 1999. 76(6): p. 938-943.
[35] Heo HyeMi, H.H., L.Y. Lee YunKyung, and C.Y. Chang YoonHyuk, Effect of cross-linking on physicochemical and in vitro digestibility properties of potato starch. 2017.
[36] Koo, S.H., K.Y. Lee, and H.G. Lee, Effect of cross-linking on the physicochemical and physiological properties of corn starch. Food hydrocolloids, 2010. 24(6-7): p. 619-625.
[37] Chen, B., et al., Physicochemical properties and micro-structural characteristics in starch from kudzu root as affected by cross-linking. Food chemistry, 2017. 219: p. 93-101.
[38] Liu, C., et al., Influence of phosphorylation and acetylation on structural, physicochemical and functional properties of chestnut starch. Polymers, 2022. 14(1): p. 172.
[39] Jacobson, M.R. and J.N. BeMiller, Method for determining the rate and extent of accelerated starch retrogradation. Cereal chemistry, 1998. 75(1): p. 22-29.
[40] Landerito, N.A. and Y.J. Wang, Preparation and properties of starch phosphates using waxy, common, and high‐amylose corn starches. I. Oven‐heating method. Cereal chemistry, 2005. 82(3): p. 264-270.
[41] Singh, J., L. Kaur, and O. McCarthy, Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food hydrocolloids, 2007. 21(1): p. 1-22.
[42] Sang, Y., et al., Effects of alkaline treatment on the structure of phosphorylated wheat starch and its digestibility. Food Chemistry, 2010. 118(2): p. 323-327.
[43] Lin, Q., et al., Characterization of the pasting, flow and rheological properties of native and phosphorylated rice starches. Starch‐Stärke, 2009. 61(12): p. 709-715.
[44] Majzoobi, M., et al., Physicochemical properties of cross-linked-annealed wheat starch. Iranian Polymer Journal, 2012. 21: p. 513-522.
[45] Hazarika, B.J. and N. Sit, Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch. Carbohydrate polymers, 2016. 140: p. 269-278.
[46] Sudheesh, C., et al., Effect of dual modification with annealing, heat moisture treatment and cross-linking on the physico-chemical, rheological and in vitro digestibility of underutilised kithul (Caryota urens) starch. Journal of Food Measurement and Characterization, 2020. 14: p. 1557-1567.
[47] Dos Santos, T.P.R., et al., Crystallinity, thermal and pasting properties of starches from different potato cultivars grown in Brazil. International Journal of Biological Macromolecules, 2016. 82: p. 144-149.
[48] Sudheesh, C., K.V. Sunooj, and J. George, Kithul palm (Caryota urens) as a new source of starch: Effect of single, dual chemical modifications and annealing on the physicochemical properties and in vitro digestibility. International journal of biological macromolecules, 2019. 125: p. 1084-1092.
[49] Szczesniak, A.S., Texture is a sensory property. Food quality and preference, 2002. 13(4): p. 215-225.
[50] Abd Karim, A., M. Norziah, and C. Seow, Methods for the study of starch retrogradation. Food chemistry, 2000. 71(1): p. 9-36.
[51] Bruni, G.P., et al., Phosphorylated and cross‐linked wheat starches in the presence of polyethylene oxide and their application in biocomposite films. Starch‐Stärke, 2018. 70(7-8): p. 1700192.
[52] Dong, H. and T. Vasanthan, Effect of phosphorylation techniques on structural, thermal, and pasting properties of pulse starches in comparison with corn starch. Food Hydrocolloids, 2020. 109: p. 106078.
[53] Kou, T. and Q. Gao, New insight in crosslinking degree determination for crosslinked starch. Carbohydrate research, 2018. 458: p. 13-18.
[54] Shukri, R. and Y.-C. Shi, Physiochemical properties of highly cross-linked maize starches and their enzymatic digestibilities by three analytical methods. Journal of cereal science, 2015. 63: p. 72-80.
[55] Kizil, R., J. Irudayaraj, and K. Seetharaman, Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. Journal of agricultural and food chemistry, 2002. 50(14): p. 3912-3918.
[56] Shalviri, A., et al., Novel modified starch–xanthan gum hydrogels for controlled drug delivery: Synthesis and characterization. Carbohydrate Polymers, 2010. 79(4): p. 898-907.
[57] Ashwar, B.A., et al., Physicochemical properties, in-vitro digestibility and structural elucidation of RS4 from rice starch. International journal of biological macromolecules, 2017. 105: p. 471-477.
[58] Sang, Y., O. Prakash, and P.A. Seib, Characterization of phosphorylated cross-linked resistant starch by 31P nuclear magnetic resonance (31P NMR) spectroscopy. Carbohydrate Polymers, 2007. 67(2): p. 201-212.
[59] Soler, A., et al., Double helical order and functional properties of acid-hydrolyzed maize starches with different amylose content. Carbohydrate research, 2020. 490: p. 107956.
[60] Zhou, D., et al., Structural characteristics and physicochemical properties of field pea starch modified by physical, enzymatic, and acid treatments. Food Hydrocolloids, 2019. 93: p. 386-394.
[61] Chakraborty, I., et al., An insight into the gelatinization properties influencing the modified starches used in food industry: a review. Food and Bioprocess Technology, 2022. 15(6): p. 1195-1223.
[62] Sharma, V., et al., Barnyard millet starch cross-linked at varying levels by sodium trimetaphosphate (STMP): film forming, physico-chemical, pasting and thermal properties. Carbohydrate Polymer Technologies and Applications, 2021. 2: p. 100161.
[63] Gonenc, I. and F. Us, Effect of glutaraldehyde crosslinking on degree of substitution, thermal, structural, and physicochemical properties of corn starch. Starch‐Stärke, 2019. 71(3-4): p. 1800046.
[64] Park, E.Y. and S.-T. Lim, Characterization of waxy starches phosphorylated using phytic acid. Carbohydrate polymers, 2019. 225: p. 115225.
[65] Yoneya, T., et al., Influence of cross-linked potato starch treated with POCl3 on DSC, rheological properties and granule size. Carbohydrate Polymers, 2003. 53(4): p. 447-457.
[66] Sriprablom, J., et al., Effect of single and dual modifications with cross-linking and octenylsuccinylation on physicochemical, in-vitro digestibility, and emulsifying properties of cassava starch. Food Research International, 2023. 163: p. 112304.
[67] Sandhu, K.S., et al., Effect of degree of cross linking on physicochemical, rheological and morphological properties of Sorghum starch. Carbohydrate Polymer Technologies and Applications, 2021. 2: p. 100073.
[68] Huber, K.C. and J.N. BeMiller, Location of sites of reaction within starch granules. Cereal chemistry, 2001. 78(2): p. 173-180.
[69] Aaliya, B., et al., Impact of microwave irradiation on chemically modified talipot starches: A characterization study on heterogeneous dual modifications. International Journal of Biological Macromolecules, 2022. 209: p. 1943-1955.
[70] Sun, F., et al., Effect of the phytate and hydrogen peroxide chemical modifications on the physicochemical and functional properties of wheat starch. Food Research International, 2017. 100: p. 180-192.
[71] Majzoubi, M., et al., Physico-chemical properties of phosphoryl chloride cross-linked wheat starch. 2009.