مروری بر کاربرد تکنولوژی‌های پیشرفته غیرحرارتی در صنایع غذایی

نویسندگان
1 دانشجوی دکتری، گروه علوم و صنایع غذایی، واحد ورامین پیشوا، دانشگاه آزاد اسلامی، تهران، ایران
2 استادیار، گروه علوم و صنایع غذایی، واحد ورامین پیشوا، دانشگاه آزاد اسلامی، تهران، ایران
چکیده
صنعت فراوری مواد غذایی یکی از مهم‌ترین صنایع می‌باشد که امروزه با توجه به درخواست روز افزون مواد غذایی با کیفیت دچار تحولات بسیاری گشته است. توجه به حفظ مواد مغذی و عدم تغییر بافت و رنگ محصولات لزوم استفاده از فناوری‌هایی با دمای پائینتر را به خوبی مشخص می‌گرداند چرا که در فناوری‌های قدیمی‌تر معمولا از دمای بالا استفاده میگردید. امروزه اثرات سلامت بخشی غذاها از جمله مهمترین فاکتورهای مقبولیت یک فراورده می‌باشد که در فراوری‌های جدیدتر می‌توان با حرارت کمتر، باعث حفظ انواع ویتامین‌ها و کیفیت و رنگ محصول نهایی گشت. از جمله این فراوری‌ها می‌توان به فیلتراسیون غشایی، باکتریوسین‌ها، میکروکپسولاسیون، فراصوت، پخت اکستروژن و پرتودهی اشاره نمود. روش‌های فوق علاوه بر حفظ کیفیت و مواد مغذی محصول، مقرون‌به‌صرفه و سازگار با محیط زیست نیز می‌باشد که لزوم توجه بیشتر به آن‌ها برای حفظ سلامتی و در کنار مسائل اقتصادی و زیست محیطی را به خوبی آشکار می‌سازد. کپسوله نمودن مواد مغذی باعث حفظ مواد در شرایط محیطی و دستگاه گوارش نیز میگردد که باعث شده امروزه این روش بیشتر مورد توجه متخصصین قرار گیرد. در این مقاله به بررسی انواع روشهای نوین فراوری در صنعت غذا پرداخته شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

An overview of the application of advanced non-thermal technologies in the food industry

نویسندگان English

Morva Hosseiny 1
Bijan Khorshidpour 2
1 PhD student, Department of Food Science and technology, Varamin Pishva Branch, Islamic Azad University, Tehran, Iran
2 Assistant Professor, Department of Food Science and technology, Varamin Pishva Branch, Islamic Azad University, Tehran, Iran
چکیده English

Food processing is one of the most important industries, and it has undergone many changes due to the increasing demand for high-quality food. Attention to preserving nutrients and not changing the texture and color of products indicates the need to use technologies with lower temperatures because older technologies usually use high temperatures. Today, the health effects of food are among the most important factors in the acceptability of a product. In newer processes, it is possible to preserve all kinds of vitamins and the quality and color of the final product with less heat. Among these processes, we can mention membrane filtration, bacteriocins, microencapsulation, ultrasound, extrusion cooking, and irradiation. In addition to maintaining the quality and nutrients of the product, the above methods are also cost-effective and environmentally friendly, which clearly shows the need to pay more attention to them to maintain health, along with economic and environmental issues. Encapsulating nutrients also preserves the substances in ecological conditions and the digestive tract, which has led to this method receiving more attention from specialists today. In this article, various types of modern processing methods in the food industry have been investigated.

کلیدواژه‌ها English

Quality improvement
food processing
Ultrasound
Microencapsulation
non-thermal methods
1. Liu, G., Nie, R., Liu, Y., & Mehmood, A. (2022). Combined antimicrobial effect of bacteriocins with other hurdles of physicochemic and microbiome to prolong shelf life of food: A review. Science of the Total Environment, 825, 154058.
2. Wang, L. K., Shammas, N. K., Cheryan, M., Zheng, Y. M., & Zou, S. W. (2011). Treatment of food industry foods and wastes by membrane filtration. Membrane and Desalination Technologies, 237-269.
3. Poshadri, A., & Aparna, K. (2010). Microencapsulation technology: a review. Journal of Research ANGRAU, 38(1), 86-102.
4. Dehnad, D., Emadzadeh, B., Ghorani, B., & Rajabzadeh, G. (2023). High hydrostatic pressure (HHP) as a green technology opens up a new possibility for the fabrication of electrospun nanofibers: Part I-improvement of soy protein isolate properties by HHP. Food Hydrocolloids, 140, 108659.
5. Bisht, B., Bhatnagar, P., Gururani, P., Kumar, V., Tomar, M. S., Sinhmar, R., ... & Kumar, S. (2021). Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables–a review. Trends in Food Science & Technology, 114, 372-385.
6. Singla, M., & Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, 105506.
7. Lu, C., Bao, Y., & Huang, J. Y. (2021). Fouling in membrane filtration for juice processing. Current Opinion in Food Science, 42, 76-85.
8. Charcosset, C. (2021). Classical and recent applications of membrane processes in the food industry. Food Engineering Reviews, 13(2), 322-343.
9. Mehta, N., Kumar, P., Verma, A. K., Umaraw, P., Kumar, Y., Malav, O. P., ... & Lorenzo, J. M. (2022). Microencapsulation as a noble technique for the application of bioactive compounds in the food industry: A comprehensive review. Applied Sciences, 12(3), 1424.
10. Furuta, T., & Neoh, T. L. (2021). Microencapsulation of food bioactive components by spray drying: A review. Drying Technology, 39(12), 1800-1831.
11. Ghadiri Amrei S M H, ahmadi M, Shahidi S, Ariaii P, Golestan L. Study of the physicochemical, microbial and sensory properties of hamburgers enriched with turmeric and omega-3 loaded nanoliposomes. FSCT 2023; 20 (134) :71-86
12. Afshari K, Javanmard Dakheli M, Ramezan Y, Bassiri A, Ahmadi Chenarbon H. (2024). Effect of microencapsulated date pit (Phoenix dactylifera L.) extract on staling and organoleptic properties of Baguette bread. FSCT, 20 (144) :227-241
13. Cotacallapa-Sucapuca, M., Vega, E. N., Maieves, H. A., Berrios, J. D. J., Morales, P., Fernández-Ruiz, V., & Cámara, M. (2021). Extrusion process as an alternative to improve pulses products consumption. A review. Foods, 10(5), 1096.
14. Joshua Ajibola, O. (2020). An overview of irradiation as a food preservation technique. Novel Research in Microbiology Journal, 4(3), 779-789.
15. Farkas, J., & Mohácsi-Farkas, C. (2011). History and future of food irradiation. Trends in Food Science & Technology, 22(2-3), 121-126.
16. Indiarto, R., Pratama, A. W., Sari, T. I., & Theodora, H. C. (2020). Food irradiation technology: A review of the uses and their capabilities. Int. J. Eng. Trends Technol, 68(12), 91-98.
17. Indiarto, R., & Qonit, M. A. H. (2020). A review of irradiation technologies on food and agricultural products. Int. J. Sci. Technol. Res, 9(1), 4411-4414.
18. Saeed, M., Khan, W. A., Shabbir, M. A., Khan, M. I., Randhawa, M. A., & Yasmin, I. (2014). Bacteriocins as a natural antimicrobial agent in food preservation: A review. Pakistan Journal of Food Sciences, 24(4), 244-255.
19. Zacharof, M. P., & Lovitt, R. W. (2012). Bacteriocins produced by lactic acid bacteria a review article. Apcbee Procedia, 2, 50-56.
20. Todorov, S. D., Popov, I., Weeks, R., & Chikindas, M. L. (2022). Use of bacteriocins and bacteriocinogenic beneficial organisms in food products: benefits, challenges, concerns. Foods, 11(19), 3145.
21. Yap, P. G., Lai, Z. W., & Tan, J. S. (2022). Bacteriocins from lactic acid bacteria: purification strategies and applications in food and medical industries: a review. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 1-18.
22. Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S., & Srawan, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of microencapsulation, 27(3), 187-197.
23. Choudhury, N., Meghwal, M., & Das, K. (2021). Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Frontiers, 2(4), 426-442.
24. Huang, K., Yuan, Y., & Baojun, X. (2023). A critical review on the microencapsulation of bioactive compounds and their application. Food Reviews International, 39(5), 2594-2634.
25. Saberi M, Saremnezhad S, Soltani M, Faraji A. (2023). Evaluation of the quality properties of grape pomace and flaxseed oil microcapsules stabilized with different ratios of maltodextrin and gum tragacanth. FSCT, 20 (139) :201-219
26. Calderón-Oliver, M., & Ponce-Alquicira, E. (2022). The role of microencapsulation in food application. Molecules, 27(5), 1499.
27. Trilokia, M., Bandral, J. D., Chib, A., & Choudhary, P. (2022). Microencapsulation for food: An overview. Pharma Innov. J, 11, 1174-1180.
28. Ye, Q., Georges, N., & Selomulya, C. (2018). Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends in Food Science & Technology, 78, 167-179.
29. Emami S, Ahmadi M, Roozbeh Nasiraie L, Shahidi S, Jafarizadeh Malmiri H. (2023). The effect of free and encapsulated essential oil and extract of cinnamon with nanoliposome on Listeria monocytogenes and Escherichia coli inoculated into ground beef. FSCT, 19 (133) :1-16
30. Nazzaro, F., Orlando, P., Fratianni, F., & Coppola, R. (2012). Microencapsulation in food science and biotechnology. Current opinion in biotechnology, 23(2), 182-186.
31. Schrooyen, P. M., van der Meer, R., & De Kruif, C. G. (2001). Microencapsulation: its application in nutrition. Proceedings of the Nutrition Society, 60(4), 475-479.
32. Kwak, H. S., Mijan, M. A., & Ganesan, P. (2014). Application of nanomaterials, nano‐and microencapsulation to milk and dairy products. Nano‐and Microencapsulation for Foods, 273-300.
33. Jyothi, S. S., Seethadevi, A., Prabha, K. S., Muthuprasanna, P., & Pavitra, P. (2012). Microencapsulation: a review. Int. J. Pharm. Biol. Sci, 3(2), 509-531.
34. Gruskiene, R., Bockuviene, A. and Sereikaite, J., 2021. Microencapsulation of bioactive ingredients for their delivery into fermented milk products: A review. Molecules, 26(15), p.4601.
35. Bhosale, S., Desale, R. J., & Fulpagare, Y. G. (2020). Microencapsulation: applications in the different dairy products. Int J Pharm Biomed Eng, 6, 7-11.
36. BÜYÜKGÜMÜŞ, E., ÖZCAN, M., & BULCA, S. (2022). USE OF MICROENCAPSULATION AND NANOENCAPSULATION TECHNIQUES IN DAIRY TECHNOLOGY. Scientific Bulletin Series F. Biotechnologies, 26(2).
37. Janiszewska-Turak, E. (2017). Carotenoids microencapsulation by spray drying method and supercritical micronization. Food research international, 99, 891-901.
38. Frakolaki, G., Giannou, V., Kekos, D., & Tzia, C. (2021). A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods. Critical reviews in food science and nutrition, 61(9), 1515-1536.
39. Das, A., Ray, S., Raychaudhuri, U., & Chakraborty, R. (2014). Microencapsulation of probiotic bacteria and its potential application in food technology. International Journal of Agriculture, Environment and Biotechnology, 7(1), 47-53.
40. Kailasapathy, K. (2002). Microencapsulation of probiotic bacteria: technology and potential applications. Current issues in intestinal microbiology, 3(2), 39-48.
41. da Silva, S. Â. D., Batista, L. D. S. P., Diniz, D. S., Nascimento, S. S. D. C., Morais, N. S., de Assis, C. F., ... & de Sousa Júnior, F. C. (2023). Microencapsulation of Probiotics by Oil-in-Water Emulsification Technique Improves Cell Viability under Different Storage Conditions. Foods, 12(2), 252.
42. Anal, A. K., & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in food science & technology, 18(5), 240-251.
43. De Prisco, A. and Mauriello, G., 2016. Probiotication of foods: A focus on microencapsulation tool. Trends in food science & technology, 48, pp.27-39.
44. Pech-Canul, A. D. L. C., Ortega, D., García-Triana, A., González-Silva, N., & Solis-Oviedo, R. L. (2020). A brief review of edible coating materials for the microencapsulation of probiotics. Coatings, 10(3), 197.
45. Sbehat, M., Mauriello, G., & Altamimi, M. (2022). Microencapsulation of probiotics for food functionalization: An update on literature reviews. Microorganisms, 10(10), 1948.
46. Shoaei, F., Heshmati, A., Mahjub, R., Garmakhany, A. D., & Taheri, M. (2022). The assessment of microencapsulated Lactobacillus plantarum survivability in rose petal jam and the changes in physicochemical, textural and sensorial characteristics of the product during storage. Scientific reports, 12(1), 6200.
47. Ahmadi A, Shahidi S, Safari R, Motamedzadegan A, Ghorbani-HasanSaraei A. Comparison of antioxidant properties of chlorophyll extracted from alfalfa (Medicago sativa L.) using enzymatic and ultrasonic extraction methods. FSCT 2023; 20 (134) :99-108
48. Xu, B., Azam, S. R., Feng, M., Wu, B., Yan, W., Zhou, C., & Ma, H. (2021). Application of multi-frequency power ultrasound in selected food processing using large-scale reactors: A review. Ultrasonics Sonochemistry, 81, 105855.
49. Lauteri, C., Ferri, G., Piccinini, A., Pennisi, L., & Vergara, A. (2023). Ultrasound Technology as Inactivation Method for Foodborne Pathogens: A Review. Foods, 12(6), 1212.
50. Heydarian M, Heydarian A, Mortazavi S A. (2023). The effect of ultrasound treatment on the physicochemical, rheological and structural properties of starches extracted from different legumes. FSCT, 20 (137) :156-190
51. Bhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics sonochemistry, 70, 105293.
52. Inanloodoghouz M, Salehi F, Karami M, Gohari Ardabili A. The effect of ultrasound pretreatment at different powers and temperatures on the drying process of cornelian cherry. FSCT 2023; 20 (134) :109-118
53. Chen, F., Zhang, M., & Yang, C. H. (2020). Application of ultrasound technology in processing of ready-to-eat fresh food: A review. Ultrasonics sonochemistry, 63, 104953.
54. Hosseiny, Morva. Khorshidpour, Bijan (1402). An overview of new food processing methods in the food industry. In the national conference of applied research on food security, food safety and health (pp. 102-97). Research Institute of Science and Food Industry, Mashhad, Mehr 1402.
55. Qiu, L., Zhang, M., Chitrakar, B., & Bhandari, B. (2020). Application of power ultrasound in freezing and thawing Processes: Effect on process efficiency and product quality. Ultrasonics sonochemistry, 68, 105230.
56. Liu, Y., Liu, Y., Zhao, W., Li, M., Liu, N., & Bian, K. (2022). Reduction of aflatoxin B1 and zearalenone contents in corn using power ultrasound and its effects on corn quality. Toxins, 14(12), 834.
57. Hernández-Falcón, T. A., Monter-Arciniega, A., del Socorro Cruz-Cansino, N., Alanís-García, E., Rodríguez-Serrano, G. M., Castañeda-Ovando, A., ... & Jaimez-Ordaz, J. (2018). Effect of thermoultrasound on aflatoxin M1 levels, physicochemical and microbiological properties of milk during storage. Ultrasonics sonochemistry, 48, 396-403.
58. Pasqualone, A., Costantini, M., Coldea, T. E., & Summo, C. (2020). Use of legumes in extrusion cooking: A review. Foods, 9(7), 958.
59. Gu, B. J., Kowalski, R. J., & Ganjyal, G. M. (2017). Food extrusion processing: An overview.
60. Shah, M. A., Mir, S. A., & Dar, B. N. (2021). Advances in extrusion technologies. Food Formulation: Novel Ingredients and Processing Techniques, 147-163.
61. Choton, S., Gupta, N., Bandral, J. D., Anjum, N., & Choudary, A. (2020). Extrusion technology and its application in food processing: A review. The Pharma Innovation Journal, 9(2), 162-168.
62. Shelar, G. A., & Gaikwad, S. T. (2019). Extrusion in food processing: An overview. The Pharma Innovation Journal, 8(2), 562-568.
63. Navale, S. A., Swami, S. B., & Thakor, N. J. (2015). Extrusion cooking technology for foods: A review. Journal of Ready to Eat Food, 2(3), 66-80.
64. Dey, D., Richter, J. K., Ek, P., Gu, B. J., & Ganjyal, G. M. (2021). Utilization of food processing by-products in extrusion processing: A review. Frontiers in sustainable food systems, 4, 603751.
65. Dendegh, T. A., Enefola, O. S., Akpapunam, S. O., Yelmi, B. M., & Abdullahi, M. J. B. (2022). Extrusion Technology and its Application in Food Processing-An Overview. TROPICAL JOURNAL OF ENGINEERING, SCIENCE AND TECHNOLOGY, 1(2), 25-53.
66. Arapcheska, M., Spasevska, H., & Ginovska, M. (2020). Effect of irradiation on food safety and quality. Current Trends in Natural Sciences, 9(18), 100-106.