بررسی‎ ‎اثر تیمار حرارتی فرادما (‌UHT‌) بر تغییرات رنگی، لیزین، فوروزین و ویتامین ث شیر مایع نوزاد

نویسندگان
1 دانشجوی دکتری، گروه علوم و صنای ع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران
2 هیئت علمی دانشکده علوم و صنایع غذایی، دانشگاه کشاورزی و منابع طبیعی گرگان
3 پژوهشگر و استادیار انستیتو تی گسک ایرلند
چکیده
شیر مایع آماده برای تغذیه نوزادان (Ready-To-Feed Liquid Infant Formula) زمانی که شیر مادر در دسترس نباشد برای نوزادان نارس استفاده می‌شود. با این حال، استریلیزاسیون شیر مایع نوزاد با استفاده از تیمار فرادما (UHT) موجب تشکیل محصولات واکنش میلارد (MRPs) می‌شود که ممکن است بر عملکرد سیستم ایمنی و رشد کلیه‌ها اثر منفی بگذارد. در این تحقیق، شیر مایع نوزاد پس از آماده سازی در پایلوت شرکت پگاه تهران تحت تیمار حرارتی فرادما (137 درجه سلسیوس به مدت 3 ثانیه-UHT) قرار گرفت و شاخص‌های رنگی، تغذیه‌ای و ترکیبات اولیه واکنش میلارد قبل و پس از اعمال فرآیند UHT مورد بررسی قرار گرفت. یافته‌های این پژوهش نشان داد، مقدار عددی شاخص ‏L*، a* و b*‏، قبل و پس از فرایند حرارتی اختلاف معنی دار دارند (05/0‏p<‏)، همچنین مقدار لیزین در دسترس، قبل و پس از اعمال تیمار حرارتی ‏UHT‏ به ترتیب 23/0±30/2 و ‏‏05/99±0/1 درصد در ماده خشک بود (48/13 % کاهش یافت). مقدار فوروزین (شاخص ترکیبات اولیه واکنش میلارد) ‏ قبل و پس از اعمال تیمار حرارتی ‏UHT‏ به ترتیب ‏‏91/64±0/60 و 51/1±57/178 میلی گرم در 100 گرم پروتئین گزارش شد. میزان ویتامین ث به عنوان دیگر شاخص تغذیه‌ای، طی اعمال فرآیند UHT کاهش یافت (قبل و پس از اعمال تیمار حرارتی ‏UHT‏ به ترتیب 49/0±15/147 و ‏‏65/29±1/128 میلی گرم در کیلوگرم). بصورت کلی تیمار فرادما علی رغم مزایایی از جنبه ایمنی موادغذایی، بصورت قابل ملاحظه ای ارزش تغذیه‌ای شیر مایع نوزاد را از طریق واکنش میلارد کاهش داد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of the Effect of Ultra-High Temperature (UHT) Treatment on Color, Lysine, ‎Furosine, and Vitamin C in Liquid Infant Formula

نویسندگان English

Masoud Ghorbani 1
Yahya Maghsoudlou 2
Morteza Khomeiri 2
Ali Moayedi 2
farhad garavand 3
1 PhD student of Food Technology, Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Professor, Department of Food Science and Technology, Gorgan University of ‎Agricultural Sciences and Natural Resources, Gorgan, Iran (GUASNR)‎
3 Assistant professor, Department of Food Chemistry and Technology, Teagasc Moorepark ‎Food Research Centre, Fermoy, Co. Cork, Ireland
چکیده English

Ready-to-feed liquid infant formula (LIF) is used for preterm infants when human milk is unavailable. However, sterilization of liquid infant milk using ultra-high temperature (UHT) treatment leads to the formation of Maillard reaction products (MRPs), which may negatively impact the immune system and kidney development. In this study, infant liquid milk, after being prepared at the Pegah Tehran pilot plant, was subjected to UHT treatment (137°C for 3 seconds). The color indices, nutritional content, and initial Maillard reaction products were examined before and after the UHT process. The findings revealed that there were significant differences in the numerical values of L*, a*, and b* indices before and after thermal processing (p<0.05). The available lysine content before and after UHT treatment was 2.30±0.23 and 1.99±0.05 % in dry matter, respectively (13.48% reduction). The amount of Furosine (early-stage indicator) before and after UHT treatment was reported as 60.64±0.91 and 178.57±1.51 mg per 100 grams of protein, respectively. Vitamin C levels, another nutritional index, decreased during the UHT process (before and after UHT treatment were 147.15±0.49 and 128.29±1.65 mg per kilogram, respectively). Overall, while UHT treatment has benefits for food safety, it significantly reduces the nutritional value of infant liquid milk through Maillard reaction products.

کلیدواژه‌ها English

UHT
Sterilization
Infant formula
Liquid Infant Formula
Millard
‎1.‎ Cama-Moncunill, X., et al., Direct analysis of calcium in liquid infant formula via ‎laser-induced breakdown spectroscopy (LIBS). Food Chemistry, 2020. 309(125754).‎
‎2.‎ Bakker-Zierikzee, A.M., et al., Effects of infant formula containing a mixture of ‎galacto- and fructo-oligosaccharides or viable Bifidobacterium animalison the ‎intestinal microflora during the first 4 months of life. The British Journal of Nutrition, ‎‎2005. 5(94): p. 783–90.‎
‎3.‎ Guo, M. and S. Ahmad, Formulation guidelines for infant formula, in Human Milk ‎Biochemistry and Infant Formula Manufacturing Technology. 2014, Woodhead ‎Publishing: Woodhead Publishing Series in Food Science, Technology and Nutrition. p. ‎‎141-171.‎
‎4.‎ Kokkinidou, S. and D.G. Peterson, Control of Maillard-Type Off-Flavor Development in ‎Ultrahigh-Temperature-Processed Bovine Milk by Phenolic Chemistry. Journal of ‎Agricultural and Food Chemistry, 2014. 62(32): p. 8023–8033.‎
‎5.‎ Sunds, A.V., et al., Maillard reaction progress in UHT milk during storage at different ‎temperature levels and cycles. International Dairy Journal, 2017. 34.‎
‎6.‎ Happe, R.P. and L. Gambelli, Infant formula. Specialty Oils and Fats in Food and ‎Nutrition, in Specialty Oils and Fats in Food and Nutrition. 2015, Woodhead Publishing. ‎p. 285–315.‎
‎7.‎ Tamanna, N. and N. Mahmood, Food Processing and Maillard Reaction Products: ‎Effect on Human Health and Nutrition. International Journal of Food Science, 2015. 6.‎
‎8.‎ Aktağ, I.G., A. Hamzalıoğlu, and V. Gökmen, Lactose hydrolysis and protein ‎fortification pose an increased risk for the formation of Maillard reaction products in ‎UHT treated milk products. Journal of Food Composition and Analysis, 2019. 84.‎
‎9.‎ Roux, S., et al., Kinetics of Maillard reactions in model infant formula during UHT ‎treatment using a static batch ohmic heater. Dairy Science & Technology, 2009. 89: ‎p. 349-362.‎
‎10.‎ Zhang, Y., et al., Effect of different heat treatments on the Maillard reaction products, ‎volatile compounds and glycation level of milk. International Dairy Journal, 2021. ‎Volume 123(105182).‎
‎11.‎ Roux, S., et al., Comparative thermal impact of two UHT technologies, continuous ‎ohmic heating and direct steam injection, on the nutritional properties of liquid infant ‎formula. Journal of Food Engineering, 2016. 179: p. 36-43.‎
‎12.‎ Guo, Y., et al., Changes in Maillard reaction products, volatile substances and active ‎proteins of goat milk under different heat treatments. International Dairy Journal, ‎‎2024. 146.‎
‎13.‎ https://www.statista.com/statistics/976542/sales-of-baby-milk-formula-by-type-us‌/‌‎.‎
‎14.‎ Zhu, H., et al., Trapping of Carbonyl Compounds by Epicatechin: Reaction Kinetics and ‎Identification of Epicatechin-adducts in Stored UHT Milk. Journal of Agricultural and ‎Food Chemistry, 2020. 68(29): p. 7718–7726.‎
‎15.‎ Al-Saadi, J.M.S.a.H.C.D., Cross-linking of proteins and other changes in UHT milk ‎during storage at ‎different temperatures." Australian Journal of Dairy Technology, ‎‎2008. 6(63): p. 79-85.‎
‎16.‎ Aalaei, K., et al., Application of a dye-binding method for the determination of ‎available lysine in skim milk powders. Food Chemistry, 2016(196): p. 815-820.‎
‎17.‎ Charissou, A., L. Ait-Ameur, and I. Birlouez-Aragon, Evaluation of a gas ‎chromatography/mass spectrometry ‎method for the quantification of ‎carboxymethyllysine in food samples. Journal of Chromatography A, 2007. 1140(1-2): ‎p. 189-194.‎
‎18.‎ Schamberger, G.P. and T.P. Labuza, Effect of green tea flavonoids on Maillard ‎browning in UHT milk. LWT - Food Science and Technology, 2007. 40(8): p. 1410-‎‎1417.‎
‎19.‎ Lalwani, S., et al., Changes in nutritional and technological properties of heat-treated ‎milk and cream at dairy production scale during storage International Dairy Journal, ‎‎2024(154 ): p. 105927.‎
‎20.‎ Milovanovic, B., et al., Colour assessment of milk and milk products using computer ‎vision system and colorimeter. International Dairy Journal, 2021(120 ): p. 105084.‎
‎21.‎ Karlsson, M.A., et al., Changes in stability and shelf-life of ultra-high temperature ‎treated milk during long term storage at different temperatures. Heliyon, 2019(5 ): p. ‎e02431.‎
‎22.‎ Aalaei, K., et al., Early and advanced stages of Maillard reaction in infant formulas: ‎Analysis of available lysine and carboxymethyl-lysine. PLoS ONE, 2019. 7(14).‎
‎23.‎ Prestela, S., et al., Evaluation of the effect of berry extracts on carboxymethyllysine ‎and lysine in ultra-high temperature treated milk. Food Research International, 2020. ‎‎130(108923).‎
‎24.‎ Contreras-Calderón, J., et al., Effect of Ingredients on Non-enzymatic Browning, ‎Nutritional Value and Furanic Compounds in Spanish Infant Formulas. Journal of Food ‎and Nutrition Research, 2017. 5(4): p. 243-252.‎
‎25.‎ Zhao, X., et al., Effects of different heat treatments on Maillard reaction products and ‎volatile substances of camel milk. Front in Nutrition, 2023. 10(1072261).‎
‎26.‎ Laguerre, J.C., et al., The impact of microwave heating of infant formula model on ‎neo-formed contaminant formation, nutrient degradation and spore destruction. ‎Journal of Food Engineering,, 2011. 107(2): p. 208-213.‎
‎27.‎ Yang, H., et al., Degradation kinetics of vitamins in different enteral feeding formulas ‎during storage at different temperatures. Heliyon, 2024(10 ): p. e29653.‎