[1] Labban, L. (2014). Medicinal and pharmacological properties of Turmeric (Curcuma longa): A review. Int J Pharm Biomed Sci, 5(1), 17-23.
[2]Serri, C., Argirò, M., Piras, L., Mita, D. G., Saija, A., Mita, L., Forte, M., Giarra, S., Biondi, M., Crispi, S., & Mayol, L. (2017). Nano-precipitated curcumin loaded particles: effect of carrier size and drug complexation with (2-hydroxypropyl)-β-cyclodextrin on their biological performances. International Journal of Pharmaceutics, 520(1–2), 21–28. https://doi.org/10.1016/j.ijpharm.2017.01.049.
[3]Chen, F. P., Li, B. S., & Tang, C. H. (2015). Nanocomplexation between Curcumin and Soy Protein Isolate: Influence on Curcumin Stability/Bioaccessibility and in Vitro Protein Digestibility. Journal of Agricultural and Food Chemistry, 63(13), 3559–3569. https://doi.org/10.1021/acs.jafc.5b00448.
[4]Yu, H., & Huang, Q. (2010). Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch. Food Chemistry, 119(2), 669–674. https://doi.org/10.1016/j.foodchem.2009.07.018.
[5]Ghayour, N., Hosseini, S. M. H., Eskandari, M. H., Esteghlal, S., Nekoei, A. R., Hashemi Gahruie, H., Tatar, M., & Naghibalhossaini, F. (2019). Nanoencapsulation of quercetin and curcumin in casein-based delivery systems. Food Hydrocolloids, 87, 394–403. https://doi.org/10.1016/j.foodhyd.2018.08.031.
[6]Du, M., Xie, J., Gong, B., Xu, X., Tang, W., Li, X., Li, C., & Xie, M. (2018). Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocolloids, 76, 131–140. https://doi.org/10.1016/j.foodhyd.2017.01.003.
[7]Hou, D., Yousaf, L., Xue, Y., Hu, J., Wu, J., Hu, X., Feng, N., & Shen, Q. (2019). Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients, 11(6), 1238. https://doi.org/10.3390/nu11061238.
[8]Palomino, E. (1994). “Carbohydrate handles” as natural resources in drug delivery. Advanced Drug Delivery Reviews, 13(3), 311–323. https://doi.org/10.1016/0169-409X(94)90017-5.
[9]Kumar, S., & Yadav, S. S. (2018). Effect of Phosphorus Fertilization and Bio-organics on Growth, Yield and Nutrient Content of Mungbean ( Vigna radiata (L.)Wilczek)]. Res J Agric Sci, 9(6), 1252–1257.
[10]Sekhavat, R., Ghanbari, D & Mirzashahi, K. (2018). Instructions for planting, keeping and harvesting mung bean in Khuzestan. Publication of the Agricultural Research, Education and Promotion Organization. Page 23.
[11]Wei, Z., & Huang, Q. (2019). Assembly of Protein-Polysaccharide Complexes for Delivery of Bioactive Ingredients: A Perspective Paper. Journal of Agricultural and Food Chemistry, 67(5), 1344–1352. https://doi.org/10.1021/acs.jafc.8b06063.
[12]de Oliveira, F. C., Coimbra, J. S. dos R., de Oliveira, E. B., Zuñiga, A. D. G., & Rojas, E. E. G. (2016). Food Protein-polysaccharide Conjugates Obtained via the Maillard Reaction: A Review. Critical Reviews in Food Science and Nutrition, 56(7), 1108–1125. https://doi.org/10.1080/10408398.2012.755669.
[13]Shishir, M. R. I., Xie, L., Sun, C., Zheng, X., & Chen, W. (2018). Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science and Technology, 78, 34–60. https://doi.org/10.1016/j.tifs.2018.05.018.
[14]Wang, Z., Han, F., Sui, X., Qi, B., Yang, Y., Zhang, H., Wang, R., Li, Y., & Jiang, L. (2016). Effect of ultrasound treatment on the wet heating Maillard reaction between mung bean [Vigna radiate (L.)] protein isolates and glucose and on structural and physico-chemical properties of conjugates. Journal of the Science of Food and Agriculture, 96(5), 1532–1540. https://doi.org/10.1002/jsfa.7255.
[15]Pan, K., Chen, H., Baek, S. J., & Zhong, Q. (2018). Self-assembled curcumin-soluble soybean polysaccharide nanoparticles: Physicochemical properties and in vitro anti-proliferation activity against cancer cells. Food Chemistry, 246(October 2017), 82–89. https://doi.org/10.1016/j.foodchem.2017.11.002.
[16]He, W., Tian, L., Zhang, S., & Pan, S. (2021). A novel method to prepare protein-polysaccharide conjugates with high grafting and low browning: Application in encapsulating curcumin. Lwt, 145(December 2020), 111349. https://doi.org/10.1016/j.lwt.2021.111349.
[17]Brishti, F. H., Zarei, M., Muhammad, S. K. S., Ismail-Fitry, M. R., Shukri, R., & Saari, N. (2017). Evaluation of the functional properties of mung bean protein isolate for development of textured vegetable protein. International Food Research Journal, 24(4), 1595–1605.
[18]Kaushik, P., Dowling, K., McKnight, S., Barrow, C. J., Wang, B., & Adhikari, B. (2016). Preparation, characterization and functional properties of flax seed protein isolate. Food Chemistry, 197, 212–220. https://doi.org/10.1016/j.foodchem.2015.09.106.
[19]Zhuo, X. Y., Qi, J. R., Yin, S. W., Yang, X. Q., Zhu, J. H., & Huang, L. X. (2013). Formation of soy protein isolate-dextran conjugates by moderate Maillard reaction in macromolecular crowding conditions. Journal of the Science of Food and Agriculture, 93(2), 316–323. https://doi.org/10.1002/jsfa.5760.
[20]Dong, S., Panya, A., Zeng, M., Chen, B., McClements, D. J., & Decker, E. A. (2012). Characteristics and antioxidant activity of hydrolyzed β-lactoglobulin-glucose Maillard reaction products. Food Research International, 46(1), 55–61. https://doi.org/10.1016/j.foodres.2011.11.022.
[21]Peng, S., Zhou, L., Cai, Q., Zou, L., Liu, C., Liu, W., & McClements, D. J. (2020). Utilization of biopolymers to stabilize curcumin nanoparticles prepared by the pH-shift method: Caseinate, whey protein, soy protein and gum Arabic. Food Hydrocolloids, 107(April), 105963. https://doi.org/10.1016/j.foodhyd.2020.105963.
[22]Karbasi, M., Askari, G., & Madadlou, A. (2021). Effects of acetyl grafting on the structural and functional properties of whey protein microgels. Food Hydrocolloids, 112(October 2020), 106443. https://doi.org/10.1016/j.foodhyd.2020.106443.
[23]Yi, J., Fan, Y., Zhang, Y., Wen, Z., Zhao, L., & Lu, Y. (2016). Glycosylated α-lactalbumin-based nanocomplex for curcumin: Physicochemical stability and DPPH-scavenging activity. Food Hydrocolloids, 61, 369–377. https://doi.org/10.1016/j.foodhyd.2016.05.036
[24]Maltais, A., Remondetto, G. E., & Subirade, M. (2009). Soy protein cold-set hydrogels as controlled delivery devices for nutraceutical compounds. Food Hydrocolloids, 23(7), 1647–1653. https://doi.org/10.1016/j.foodhyd.2008.12.006.
[25]Li, W., Shu, C., Yan, S., & Shen, Q. (2010). Characteristics of sixteen mung bean cultivars and their protein isolates. International Journal of Food Science and Technology, 45(6), 1205–1211. https://doi.org/10.1111/j.1365-2621.2010.02259.x.
[26]Rahma, E. H., Dudek, S., Mothes, R., Görnitz, E., & Schwenke, K. D. (2000). Physicochemical characterization of mung bean (Phaseolus aureus) protein isolates. Journal of the Science of Food and Agriculture, 80(4), 477–483. https://doi.org/10.1002/(SICI)1097-0010(200003)80:4<477::AID-JSFA553>3.0.CO;2-0
[27] Wintersohle, C., Kracke, I., Ignatzy, L. M., Etzbach, L., & Schweiggert-Weisz, U. (2023). Physicochemical and chemical properties of mung bean protein isolate affected by the isolation procedure. Current Research in Food Science, 100582.
[28]Kudre, T. G., Benjakul, S., & Kishimura, H. (2013). Comparative study on chemical compositions and properties of protein isolates from mung bean, black bean and bambara groundnut. Journal of the Science of Food and Agriculture, 93(10), 2429–2436. https://doi.org/10.1002/jsfa.6052.
[29]Dahiya, P. K., Linnemann, A. R., Van Boekel, M. A. J. S., Khetarpaul, N., Grewal, R. B., & Nout, M. J. R. (2015). Mung Bean: Technological and Nutritional Potential. Critical Reviews in Food Science and Nutrition, 55(5), 670–688. https://doi.org/10.1080/10408398.2012.671202.
[30]Zhang, Y., Venkitasamy, C., Pan, Z., & Wang, W. (2013). Recent developments on umami ingredients of edible mushrooms - A review. Trends in Food Science and Technology, 33(2), 78–92. https://doi.org/10.1016/j.tifs.2013.08.002.
[31]Chen, W., Ma, X., Wang, W., Lv, R., Guo, M., Ding, T., Ye, X., Miao, S., & Liu, D. (2019). Preparation of modified whey protein isolate with gum acacia by ultrasound maillard reaction. Food Hydrocolloids, 95, 298–307. https://doi.org/10.1016/j.foodhyd.2018.10.030.
[32]Zhao, C. Bin, Zhou, L. Y., Liu, J. Y., Zhang, Y., Chen, Y., & Wu, F. (2016). Effect of ultrasonic pretreatment on physicochemical characteristics and rheological properties of soy protein/sugar Maillard reaction products. Journal of Food Science and Technology, 53(5), 2342–2351. https://doi.org/10.1007/s13197-016-2206-z.
[33]Li, C., Huang, X., Peng, Q., Shan, Y., & Xue, F. (2014). Physicochemical properties of peanut protein isolate-glucomannan conjugates prepared by ultrasonic treatment. Ultrasonics Sonochemistry, 21(5), 1722–1727. https://doi.org/10.1016/j.ultsonch.2014.03.018.
[34]Zhang, B., Chi, Y. J., & Li, B. (2014). Effect of ultrasound treatment on the wet heating Maillard reaction between β-conglycinin and maltodextrin and on the emulsifying properties of conjugates. European Food Research and Technology, 238(1), 129–138. https://doi.org/10.1007/s00217-013-2082-y.
[35]Jin, H., Zhao, Q., Feng, H., Wang, Y., Wang, J., Liu, Y., Han, D., & Xu, J. (2019). Changes on the structural and physicochemical properties of conjugates prepared by the Maillard reaction of black bean protein isolates and glucose with ultrasound pretreatment. Polymers, 11(5). https://doi.org/10.3390/polym11050848.
[36]Zhang, H., Yang, J., & Zhao, Y. (2015). High intensity ultrasound assisted heating to improve solubility, antioxidant and antibacterial properties of chitosan-fructose Maillard reaction products. LWT - Food Science and Technology, 60(1), 253–262. https://doi.org/10.1016/j.lwt.2014.07.050.
[37]Abdelhedi, O., Mora, L., Jemil, I., Jridi, M., Toldrá, F., Nasri, M., & Nasri, R. (2017). Effect of ultrasound pretreatment and Maillard reaction on structure and antioxidant properties of ultrafiltrated smooth-hound viscera proteins-sucrose conjugates. Food Chemistry, 230, 507–515. https://doi.org/10.1016/j.foodchem.2017.03.05
[38]Li, H., Tang, X. Y., Wu, C. J., & Yu, S. J. (2019). Formation of 2,3-dihydro-3,5-Dihydroxy-6-Methyl-4(H)-Pyran-4-One (DDMP) in glucose-amino acids Maillard reaction by dry-heating in comparison to wet-heating. Lwt, 105(February), 156–163. https://doi.org/10.1016/j.lwt.2019.02.015.
[39]Zhou, L., Wu, F., Zhang, X., & Wang, Z. (2017). Structural and functional properties of Maillard reaction products of protein isolate (mung bean, Vigna radiate (L.)) with dextran. International Journal of Food Properties, 20(2), 1246–1258. https://doi.org/10.1080/10942912.2017.1338727.
[40]Jiang, S., Ding, J., Andrade, J., Rababah, T. M., Almajwal, A., Abulmeaty, M. M., & Feng, H. (2017). Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments. Ultrasonics Sonochemistry, 38(January), 835–842. https://doi.org/10.1016/j.ultsonch.2017.03.046
[41]Fan, Y., Yi, J., Zhang, Y., & Yokoyama, W. (2018). Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity. Food Chemistry, 239, 1210–1218. https://doi.org/10.1016/j.foodchem.2017.07.075.
[42]Sonklin, C.,Laohakunjit, N., Kerdchoechuen, O., & Ratanakhanokchai, K. (2018). Volatile flavour compounds, sensory characteristics and antioxidant activities of mungbean meal protein hydrolysed by bromelain.Journal of Food Science and Technology, 55(1), 265–277. https://doi.org/10.1007/s13197-017-2935-7.
[43]Gu, F. L., Kim, J. M., Abbas, S., Zhang, X. M., Xia, S. Q., & Chen, Z. X. (2010). Structure and antioxidant activity of high molecular weight Maillard reaction products from casein-glucose. Food Chemistry, 120(2), 505–511. https://doi.org/10.1016/j.foodchem.2009.10.044.
[44]Zhang, X., Li, X., Liu, L., Wang, L., Massounga Bora, A. F., & Du, L. (2020). Covalent conjugation of whey protein isolate hydrolysates and galactose through Maillard reaction to improve the functional properties and antioxidant activity. International Dairy Journal, 102, 104584. https://doi.org/10.1016/j.idairyj.2019.104584.
[45]Liu, Y., Ying, D., Cai, Y., & Le, X. (2017). Improved antioxidant activity and physicochemical properties of curcumin by adding ovalbumin and its structural characterization. Food Hydrocolloids, 72, 304–311. https://doi.org/10.1016/j.foodhyd.2017.06.007
[46]Guo, Q., Su, J., Shu, X., Yuan, F., Mao, L., Liu, J., & Gao, Y. (2020). Production and characterization of pea protein isolate-pectin complexes for delivery of curcumin: Effect of esterified degree of pectin. Food Hydrocolloids, 105(17), 105777. https://doi.org/10.1016/j.foodhyd.2020.105777
[47]Guo, Q., Shu, X., Hu, Y., Su, J., Chen, S., Decker, E. A., & Gao, Y. (2021). Formulated protein-polysaccharide-surfactant ternary complexes for co-encapsulation of curcumin and resveratrol: Characterization, stability and in vitro digestibility. Food Hydrocolloids, 111(17), 106265. https://doi.org/10.1016/j.foodhyd.2020.106265.
[48]Yi, J., Lam, T. I., Yokoyama, W., Cheng, L. W., & Zhong, F. (2014). Controlled release of β-carotene in β-lactoglobulin-dextran- conjugated nanoparticles" in vitro digestion and transport with caco-2 monolayers. Journal of Agricultural and Food Chemistry, 62(35), 8900–8907. https://doi.org/10.1021/jf502639k.
[49]Ha, P. T., Le, M. H., Hoang, T. M. N., Le, T. T. H., Duong, T. Q., Tran, T. H. H., Tran, D. L., & Nguyen, X. P. (2012). Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(3). https://doi.org/10.1088/2043-6262/3/3/035002
[50]Paşcaləu, V., Soritau, O., Popa, F., Pavel, C., Coman, V., Perhaita, I., Borodi, G., Dirzu, N., Tabaran, F., & Popa, C. (2016). Curcumin delivered through bovine serum albumin/polysaccharides multilayered microcapsules. Journal of Biomaterials Applications, 30(6), 857–872. https://doi.org/10.1177/0885328215603797.