نانو درونپوشانی کورکومین درمزدوج ایزوله پروتئین ماش- مالتودکسترین و تعیین ویژگی های فیزیکوشیمیایی و رهایشی آن

نویسندگان
دانشگاه تهران
چکیده
در این پژوهش با بهره­گیری از واکنش میلارد، یک سیستم تحویل برگرفته از منابع گیاهی(ایزوله پروتئین ماش و مالتودکسترین) برای ریزپوشانی و رهایش کنترل شده کورکومین طراحی و ساخته شد. واکنش میلارد به دو روش استفاده از امواج فراصوت (150 وات، 80 درجه سلسیوس، 10 دقیقه) و روش مرطوب(80 درجه سلسیوس، 60 دقیقه) برای سه نسبت مختلف ایزوله پروتئین ماش به مالتودکسترین انجام شد. درصد مزدوج سازی به روش OPA و تخمین محصولات نهایی میلارد توسط اسپکتروفوتومتر انجام شد و تیمار بهینه برای بارگذاری کورکومین انتخاب گردید. غلظت‌‌های مختلف کورکومین (mg mL-1 6/0، 4/0، 2/0، 0) به دو روش متداول( انحلال در اتانول) و روش تغییر pH (روشی بدون نیاز به حلال‌‌های آلی) بارگذاری شدند. پس از تعیین کارایی درونپوشانی و میزان بارگذاری کورکومین، تیمار مزدوج ایزوله پروتئین ماش- مالتودکسترین تهیه شده به روش تغییر pH و غلظت 4/0 میلی گرم بر میلی لیتر کورکومین به عنوان تیمار بهینه انتخاب و برای مقایسه بهتر نتایج و بررسی تاثیر مزدوج سازی، از تیمار ایزوله پروتئین ماش و کورکومین نیز به عنوان کنترل استفاده شد. نتایج تعیین اندازه ذرات(DLS) نشان داد که ذرات در ابعاد نانو بوده و نتایج FTIR نشان داد که کورکومین توانسته از طریق برهمکنش‌‌های آبگریز، جاذبه الکترواستاتیکی و پیوندهای هیدروژنی در ساختار نانو ذرات کپسوله شود. بررسی فعالیت آنتی اکسیدانی نشان داد که بیشترین قدرت مهارکنندگی رادیکال DPPH مربوط به ترکیب مزدوج- کورکومین تهیه شده به روش تغییر پی اچ بوده است. این امر می‌تواند به دلیل بالاتر بودن کارایی درونپوشانی باشد. رفتار رهایش کورکومین در شرایط هضم متوالی شبیه سازی شده گوارشی(معده و روده) نشان داد که درون پوشانی کورکومین با روش انجام گرفته در این پژوهش باعث رهایش آهسته­تر کورکومین شده و در تیمار تهیه شده با مزدوج ایزوله پروتئین ماش- مالتودکسترین رهایش کورکومین آهسته ­تر از تیمار ایزوله پروتئین ماش بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

nano encapsulation of curcumin in mung bean protein isolate-maltodextrin conjugate, estimation of physicochemical and release properties

نویسندگان English

Somayeh Aziznia
Gholamreza Askari
Zahra emamdjomeh
maryam salami
University of Tehran
چکیده English

A delivery system was developed according to maillard reaction using mung bean protein and maltodextrin for encapsulation and sustain release of curcumin. The ultrasound assisted (150 W, 80 °C, 10 min) and classic wet heating (80 °C, 60 min), were used to prepare conjugates at three different ratios of Mung bean protein isolate to maltodextrin. Degree of conjugation was measured using OPA method Uv-visible spectroscopy was used to estimate the final products of maillard reaction. Different amounts of curcumin (0, 0.2, 0.4 and 0.6 mg.mL-1 was loaded using ethanol and change in pH. Primary analysis showed that the optimized samples were obtained when 0.4mg.mL-1 of curcumin was encapsulated using pH change method. FTIR spectra confirmed the conjugation of the MPI and MD and showed the electrostatic and hydrophobic interactions as well as hydrogen bonding are the main reasons of conjugates stability and curcumin encapsulation. The prepared curcumin containing conjugates under optimized method showed the higher DPPH radical scavenging activity. Our results showed that the release rate of encapsulated curcumin under simulated condition of gastrointestinal tract (GIT) was controlled and lower than that which encapsulated in mung bean protein

کلیدواژه‌ها English

Conjugation
Maillard
mung bean protein
Maltodextrin
[1] Labban, L. (2014). Medicinal and pharmacological properties of Turmeric (Curcuma longa): A review. Int J Pharm Biomed Sci, 5(1), 17-23.
[2]Serri, C., Argirò, M., Piras, L., Mita, D. G., Saija, A., Mita, L., Forte, M., Giarra, S., Biondi, M., Crispi, S., & Mayol, L. (2017). Nano-precipitated curcumin loaded particles: effect of carrier size and drug complexation with (2-hydroxypropyl)-β-cyclodextrin on their biological performances. International Journal of Pharmaceutics, 520(1–2), 21–28. https://doi.org/10.1016/j.ijpharm.2017.01.049.
[3]Chen, F. P., Li, B. S., & Tang, C. H. (2015). Nanocomplexation between Curcumin and Soy Protein Isolate: Influence on Curcumin Stability/Bioaccessibility and in Vitro Protein Digestibility. Journal of Agricultural and Food Chemistry, 63(13), 3559–3569. https://doi.org/10.1021/acs.jafc.5b00448.
[4]Yu, H., & Huang, Q. (2010). Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch. Food Chemistry, 119(2), 669–674. https://doi.org/10.1016/j.foodchem.2009.07.018.
[5]Ghayour, N., Hosseini, S. M. H., Eskandari, M. H., Esteghlal, S., Nekoei, A. R., Hashemi Gahruie, H., Tatar, M., & Naghibalhossaini, F. (2019). Nanoencapsulation of quercetin and curcumin in casein-based delivery systems. Food Hydrocolloids, 87, 394–403. https://doi.org/10.1016/j.foodhyd.2018.08.031.
[6]Du, M., Xie, J., Gong, B., Xu, X., Tang, W., Li, X., Li, C., & Xie, M. (2018). Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocolloids, 76, 131–140. https://doi.org/10.1016/j.foodhyd.2017.01.003.
[7]Hou, D., Yousaf, L., Xue, Y., Hu, J., Wu, J., Hu, X., Feng, N., & Shen, Q. (2019). Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients, 11(6), 1238. https://doi.org/10.3390/nu11061238.
[8]Palomino, E. (1994). “Carbohydrate handles” as natural resources in drug delivery. Advanced Drug Delivery Reviews, 13(3), 311–323. https://doi.org/10.1016/0169-409X(94)90017-5.
[9]Kumar, S., & Yadav, S. S. (2018). Effect of Phosphorus Fertilization and Bio-organics on Growth, Yield and Nutrient Content of Mungbean ( Vigna radiata (L.)Wilczek)]. Res J Agric Sci, 9(6), 1252–1257.
[10]Sekhavat, R., Ghanbari, D & Mirzashahi, K. (2018). Instructions for planting, keeping and harvesting mung bean in Khuzestan. Publication of the Agricultural Research, Education and Promotion Organization. Page 23.
[11]Wei, Z., & Huang, Q. (2019). Assembly of Protein-Polysaccharide Complexes for Delivery of Bioactive Ingredients: A Perspective Paper. Journal of Agricultural and Food Chemistry, 67(5), 1344–1352. https://doi.org/10.1021/acs.jafc.8b06063.
[12]de Oliveira, F. C., Coimbra, J. S. dos R., de Oliveira, E. B., Zuñiga, A. D. G., & Rojas, E. E. G. (2016). Food Protein-polysaccharide Conjugates Obtained via the Maillard Reaction: A Review. Critical Reviews in Food Science and Nutrition, 56(7), 1108–1125. https://doi.org/10.1080/10408398.2012.755669.
[13]Shishir, M. R. I., Xie, L., Sun, C., Zheng, X., & Chen, W. (2018). Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science and Technology, 78, 34–60. https://doi.org/10.1016/j.tifs.2018.05.018.
[14]Wang, Z., Han, F., Sui, X., Qi, B., Yang, Y., Zhang, H., Wang, R., Li, Y., & Jiang, L. (2016). Effect of ultrasound treatment on the wet heating Maillard reaction between mung bean [Vigna radiate (L.)] protein isolates and glucose and on structural and physico-chemical properties of conjugates. Journal of the Science of Food and Agriculture, 96(5), 1532–1540. https://doi.org/10.1002/jsfa.7255.
[15]Pan, K., Chen, H., Baek, S. J., & Zhong, Q. (2018). Self-assembled curcumin-soluble soybean polysaccharide nanoparticles: Physicochemical properties and in vitro anti-proliferation activity against cancer cells. Food Chemistry, 246(October 2017), 82–89. https://doi.org/10.1016/j.foodchem.2017.11.002.
[16]He, W., Tian, L., Zhang, S., & Pan, S. (2021). A novel method to prepare protein-polysaccharide conjugates with high grafting and low browning: Application in encapsulating curcumin. Lwt, 145(December 2020), 111349. https://doi.org/10.1016/j.lwt.2021.111349.
[17]Brishti, F. H., Zarei, M., Muhammad, S. K. S., Ismail-Fitry, M. R., Shukri, R., & Saari, N. (2017). Evaluation of the functional properties of mung bean protein isolate for development of textured vegetable protein. International Food Research Journal, 24(4), 1595–1605.
[18]Kaushik, P., Dowling, K., McKnight, S., Barrow, C. J., Wang, B., & Adhikari, B. (2016). Preparation, characterization and functional properties of flax seed protein isolate. Food Chemistry, 197, 212–220. https://doi.org/10.1016/j.foodchem.2015.09.106.
[19]Zhuo, X. Y., Qi, J. R., Yin, S. W., Yang, X. Q., Zhu, J. H., & Huang, L. X. (2013). Formation of soy protein isolate-dextran conjugates by moderate Maillard reaction in macromolecular crowding conditions. Journal of the Science of Food and Agriculture, 93(2), 316–323. https://doi.org/10.1002/jsfa.5760.
[20]Dong, S., Panya, A., Zeng, M., Chen, B., McClements, D. J., & Decker, E. A. (2012). Characteristics and antioxidant activity of hydrolyzed β-lactoglobulin-glucose Maillard reaction products. Food Research International, 46(1), 55–61. https://doi.org/10.1016/j.foodres.2011.11.022.
[21]Peng, S., Zhou, L., Cai, Q., Zou, L., Liu, C., Liu, W., & McClements, D. J. (2020). Utilization of biopolymers to stabilize curcumin nanoparticles prepared by the pH-shift method: Caseinate, whey protein, soy protein and gum Arabic. Food Hydrocolloids, 107(April), 105963. https://doi.org/10.1016/j.foodhyd.2020.105963.
[22]Karbasi, M., Askari, G., & Madadlou, A. (2021). Effects of acetyl grafting on the structural and functional properties of whey protein microgels. Food Hydrocolloids, 112(October 2020), 106443. https://doi.org/10.1016/j.foodhyd.2020.106443.
[23]Yi, J., Fan, Y., Zhang, Y., Wen, Z., Zhao, L., & Lu, Y. (2016). Glycosylated α-lactalbumin-based nanocomplex for curcumin: Physicochemical stability and DPPH-scavenging activity. Food Hydrocolloids, 61, 369–377. https://doi.org/10.1016/j.foodhyd.2016.05.036
[24]Maltais, A., Remondetto, G. E., & Subirade, M. (2009). Soy protein cold-set hydrogels as controlled delivery devices for nutraceutical compounds. Food Hydrocolloids, 23(7), 1647–1653. https://doi.org/10.1016/j.foodhyd.2008.12.006.
[25]Li, W., Shu, C., Yan, S., & Shen, Q. (2010). Characteristics of sixteen mung bean cultivars and their protein isolates. International Journal of Food Science and Technology, 45(6), 1205–1211. https://doi.org/10.1111/j.1365-2621.2010.02259.x.
[26]Rahma, E. H., Dudek, S., Mothes, R., Görnitz, E., & Schwenke, K. D. (2000). Physicochemical characterization of mung bean (Phaseolus aureus) protein isolates. Journal of the Science of Food and Agriculture, 80(4), 477–483. https://doi.org/10.1002/(SICI)1097-0010(200003)80:4<477::AID-JSFA553>3.0.CO;2-0
[27] Wintersohle, C., Kracke, I., Ignatzy, L. M., Etzbach, L., & Schweiggert-Weisz, U. (2023). Physicochemical and chemical properties of mung bean protein isolate affected by the isolation procedure. Current Research in Food Science, 100582.
[28]Kudre, T. G., Benjakul, S., & Kishimura, H. (2013). Comparative study on chemical compositions and properties of protein isolates from mung bean, black bean and bambara groundnut. Journal of the Science of Food and Agriculture, 93(10), 2429–2436. https://doi.org/10.1002/jsfa.6052.
[29]Dahiya, P. K., Linnemann, A. R., Van Boekel, M. A. J. S., Khetarpaul, N., Grewal, R. B., & Nout, M. J. R. (2015). Mung Bean: Technological and Nutritional Potential. Critical Reviews in Food Science and Nutrition, 55(5), 670–688. https://doi.org/10.1080/10408398.2012.671202.
[30]Zhang, Y., Venkitasamy, C., Pan, Z., & Wang, W. (2013). Recent developments on umami ingredients of edible mushrooms - A review. Trends in Food Science and Technology, 33(2), 78–92. https://doi.org/10.1016/j.tifs.2013.08.002.
[31]Chen, W., Ma, X., Wang, W., Lv, R., Guo, M., Ding, T., Ye, X., Miao, S., & Liu, D. (2019). Preparation of modified whey protein isolate with gum acacia by ultrasound maillard reaction. Food Hydrocolloids, 95, 298–307. https://doi.org/10.1016/j.foodhyd.2018.10.030.
[32]Zhao, C. Bin, Zhou, L. Y., Liu, J. Y., Zhang, Y., Chen, Y., & Wu, F. (2016). Effect of ultrasonic pretreatment on physicochemical characteristics and rheological properties of soy protein/sugar Maillard reaction products. Journal of Food Science and Technology, 53(5), 2342–2351. https://doi.org/10.1007/s13197-016-2206-z.
[33]Li, C., Huang, X., Peng, Q., Shan, Y., & Xue, F. (2014). Physicochemical properties of peanut protein isolate-glucomannan conjugates prepared by ultrasonic treatment. Ultrasonics Sonochemistry, 21(5), 1722–1727. https://doi.org/10.1016/j.ultsonch.2014.03.018.
[34]Zhang, B., Chi, Y. J., & Li, B. (2014). Effect of ultrasound treatment on the wet heating Maillard reaction between β-conglycinin and maltodextrin and on the emulsifying properties of conjugates. European Food Research and Technology, 238(1), 129–138. https://doi.org/10.1007/s00217-013-2082-y.
[35]Jin, H., Zhao, Q., Feng, H., Wang, Y., Wang, J., Liu, Y., Han, D., & Xu, J. (2019). Changes on the structural and physicochemical properties of conjugates prepared by the Maillard reaction of black bean protein isolates and glucose with ultrasound pretreatment. Polymers, 11(5). https://doi.org/10.3390/polym11050848.
[36]Zhang, H., Yang, J., & Zhao, Y. (2015). High intensity ultrasound assisted heating to improve solubility, antioxidant and antibacterial properties of chitosan-fructose Maillard reaction products. LWT - Food Science and Technology, 60(1), 253–262. https://doi.org/10.1016/j.lwt.2014.07.050.
[37]Abdelhedi, O., Mora, L., Jemil, I., Jridi, M., Toldrá, F., Nasri, M., & Nasri, R. (2017). Effect of ultrasound pretreatment and Maillard reaction on structure and antioxidant properties of ultrafiltrated smooth-hound viscera proteins-sucrose conjugates. Food Chemistry, 230, 507–515. https://doi.org/10.1016/j.foodchem.2017.03.05
[38]Li, H., Tang, X. Y., Wu, C. J., & Yu, S. J. (2019). Formation of 2,3-dihydro-3,5-Dihydroxy-6-Methyl-4(H)-Pyran-4-One (DDMP) in glucose-amino acids Maillard reaction by dry-heating in comparison to wet-heating. Lwt, 105(February), 156–163. https://doi.org/10.1016/j.lwt.2019.02.015.
[39]Zhou, L., Wu, F., Zhang, X., & Wang, Z. (2017). Structural and functional properties of Maillard reaction products of protein isolate (mung bean, Vigna radiate (L.)) with dextran. International Journal of Food Properties, 20(2), 1246–1258. https://doi.org/10.1080/10942912.2017.1338727.
[40]Jiang, S., Ding, J., Andrade, J., Rababah, T. M., Almajwal, A., Abulmeaty, M. M., & Feng, H. (2017). Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments. Ultrasonics Sonochemistry, 38(January), 835–842. https://doi.org/10.1016/j.ultsonch.2017.03.046
[41]Fan, Y., Yi, J., Zhang, Y., & Yokoyama, W. (2018). Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity. Food Chemistry, 239, 1210–1218. https://doi.org/10.1016/j.foodchem.2017.07.075.
[42]Sonklin, C.,Laohakunjit, N., Kerdchoechuen, O., & Ratanakhanokchai, K. (2018). Volatile flavour compounds, sensory characteristics and antioxidant activities of mungbean meal protein hydrolysed by bromelain.Journal of Food Science and Technology, 55(1), 265–277. https://doi.org/10.1007/s13197-017-2935-7.
[43]Gu, F. L., Kim, J. M., Abbas, S., Zhang, X. M., Xia, S. Q., & Chen, Z. X. (2010). Structure and antioxidant activity of high molecular weight Maillard reaction products from casein-glucose. Food Chemistry, 120(2), 505–511. https://doi.org/10.1016/j.foodchem.2009.10.044.
[44]Zhang, X., Li, X., Liu, L., Wang, L., Massounga Bora, A. F., & Du, L. (2020). Covalent conjugation of whey protein isolate hydrolysates and galactose through Maillard reaction to improve the functional properties and antioxidant activity. International Dairy Journal, 102, 104584. https://doi.org/10.1016/j.idairyj.2019.104584.
[45]Liu, Y., Ying, D., Cai, Y., & Le, X. (2017). Improved antioxidant activity and physicochemical properties of curcumin by adding ovalbumin and its structural characterization. Food Hydrocolloids, 72, 304–311. https://doi.org/10.1016/j.foodhyd.2017.06.007
[46]Guo, Q., Su, J., Shu, X., Yuan, F., Mao, L., Liu, J., & Gao, Y. (2020). Production and characterization of pea protein isolate-pectin complexes for delivery of curcumin: Effect of esterified degree of pectin. Food Hydrocolloids, 105(17), 105777. https://doi.org/10.1016/j.foodhyd.2020.105777
[47]Guo, Q., Shu, X., Hu, Y., Su, J., Chen, S., Decker, E. A., & Gao, Y. (2021). Formulated protein-polysaccharide-surfactant ternary complexes for co-encapsulation of curcumin and resveratrol: Characterization, stability and in vitro digestibility. Food Hydrocolloids, 111(17), 106265. https://doi.org/10.1016/j.foodhyd.2020.106265.
[48]Yi, J., Lam, T. I., Yokoyama, W., Cheng, L. W., & Zhong, F. (2014). Controlled release of β-carotene in β-lactoglobulin-dextran- conjugated nanoparticles" in vitro digestion and transport with caco-2 monolayers. Journal of Agricultural and Food Chemistry, 62(35), 8900–8907. https://doi.org/10.1021/jf502639k.
[49]Ha, P. T., Le, M. H., Hoang, T. M. N., Le, T. T. H., Duong, T. Q., Tran, T. H. H., Tran, D. L., & Nguyen, X. P. (2012). Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(3). https://doi.org/10.1088/2043-6262/3/3/035002
[50]Paşcaləu, V., Soritau, O., Popa, F., Pavel, C., Coman, V., Perhaita, I., Borodi, G., Dirzu, N., Tabaran, F., & Popa, C. (2016). Curcumin delivered through bovine serum albumin/polysaccharides multilayered microcapsules. Journal of Biomaterials Applications, 30(6), 857–872. https://doi.org/10.1177/0885328215603797.