مقایسه تاثیر فرایند هیدروترمال و مایکروویو بر خصوصیات فیزیکوشیمیایی سبوس برنج

نویسندگان
1 استادیار، گروه علوم و صنایع غذایی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
2 کارشناسی ارشد علوم و صنایع غذایی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
چکیده
امروزه سبوس به عنوان یک ترکیب فراسودمند در صنایع غذایی مورد توجه است. این پژوهش با هدف بررسی روش­های فرآوری سبوس برنج برای بهبود ویژگی­های فیزیکوشیمیایی آن انجام شد. تیمارها در 12 گروه به شرح زیر آماده شدند: 4 نمونه تیمار شده با روش هیدروترمال H1 تا H4 (­به ترتیب به مدت 1 و 2 ساعت در دمای 30 درجه سانتی­گراد و به مدت 1 و 2 ساعت در دمای 80 درجه سانتی­گراد)، 4 نمونه تیمار شده با روش مایکروویو M1 تا M4 (­به ترتیب به مدت 4 و 7 دقیقه در توان 600 وات و به مدت 4 و 7 دقیقه در توان 900 وات) و 4 نمونه تیمار شده با روش ترکیبی هیدروترمال-مایکروویو HM1 تا HM4 (­به ترتیب ابتدا 1 و 2 ساعت در دمای 50 درجه سانتی­گراد سپس 4 دقیقه در توان 750 ، ابتدا 1 و 2 ساعت در دمای 50 درجه سانتی­گراد سپس 7 دقیقه در توان 750 وات) و یک نمونه شاهد (C0). نتایج آزمایشات نشان داد روش ترکیبی هیدروترمال-مایکروویو در کاهش اسید فیتیک نسبت روشهای مستقل موثرتر بود بطوریکه تیمار HM4 کمترین میزان اسید فیتیک را نشان داد. همچنین فرآیند ترکیبی هیدروترمال-مایکروویو بیشترین حفظ مواد معدنی را نیز نشان داد (p<0.05) و بیشترین میزان آهن و روی و کلسیم نیز در تیمار HM1 (به ترتیب 68/6 و 56/1 و 43/106­ppm) دیده شد. کمترین میزان تغییرات رنگ مربوط به سبوس فراوری شده با روش هیدروترمال (H1 با ΔE برابر 36/6) بود. بررسی فلزات سنگین نیز نشان داد روش مایکروویو در کاهش آنها ، موثرتر از سایر روش­ها بود هرچند کلیه تیمارها منجر به افت قابل ملاحظه ای از فلزات سنگین شدند . بطور کلی می­توان نتیجه گرفت استفاده از روش ترکیبی هیدروترمال- مایکروویو سبوس برنجی با خواص فیزیکوشیمیایی بهتری ارئه می­دهد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparing the effects of hydrothermal and microwave processes on the physicochemical Properties of rice bran

نویسندگان English

azin nasrollah zadeh 1
arman biati kalimani 2
1 Assistant Professor, Department of Food Science and Technology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
2 Master of Food Science and Technology , Lahijan Branch, Islamic Azad University, Lahijan, Iran
چکیده English

Today, bran is considered a functional compound in the food industry. The aim study was to investigate different processing methods of rice bran to improve its physicochemical characteristics. Treatments were prepared in 12 groups, control (C0), 4 samples hydrothermal treated H1 and H2 (1 and 2 h at 30 °C, respectively), H3 and H4 (1 and 2 h at 80 °C, respectively), 4 samples microwave treated M1 and M2 (4 and 7 min at a 600 w, respectively), M3 and M4 ((4 and 7 min at a 600 w, respectively), 4 samples hydrothermal-microwave treated HM1 and HM2 (First, 1 and 2 h at 50 °C, respectively, then 4 min at 750 w), HM3 and HM4 (First, 1 and 2 h at 50 °C, respectively, then 7 min at 750 w). The results showed that the hydrothermal-microwave method was more effective in reducing phytic acid than the other two methods (p<0.05) so the HM4 treatment had the lowest amount of phytic acid (p<0.05). The color value test showed the lowest ΔE change was related to rice bran hydrothermal treated (H1 with ΔE equal to 6.36) (p<0.05). The hydrothermal-microwave process showed the highest retention of iron, zinc, and calcium (p<0.05). Most minerals were shown in HM1 (6.68, 1.56, and 106.43 ppm, respectively). The heavy metals test indicated that in all treatments, the number of heavy metals significantly decreased compared to the control (p<0.05). However, the microwave method was more effective than others (p<0.05). Therefore, it can be concluded that using the hydrothermal-microwave method provides better quality rice bran.

کلیدواژه‌ها English

Phytic acid
Rice bran
Heavy metals
Microwave
Minerals
hydrothermal
:
[1] Sapwarobol, S., Saphyakhajorn, W. and Astina, J., 2021. Biological functions and activities of rice bran as a functional ingredient: A review. Nutrition and metabolic insights, 14, pp.1-11.
[2] Faustino, M., Veiga, M., Sousa, P., Costa, E.M., Silva, S. and Pintado, M., 2019. Agro-food byproducts as a new source of natural food additives. Molecules, 24(6), p.1056.
[3] Izadi, Z., Mazaheritehrani, M. and Shahidi, F., 2021. Effect of fermentation and microwave radiation processes on physicochemical properties of wheat bran. Innovative Food Technologies, 9(1), pp.63-79. [in Persian].
[4] Tayefe, M., Shahidi, S.A., Milani, J.M. and Sadeghi, S.M., 2020. Development, optimization, and critical quality characteristics of new wheat-flour dough formulations fortified with hydrothermally-treated rice bran. Journal of Food Measurement and Characterization, 14, pp.2878-2888.
[5] Mohammadzadeh Milani, J., Fallah Nim Chahi, P. and Ahmadi, F., 2017. Optimization of the Stabilization of Rice Bran with Different Temperature and Time Treatments. Journal of Food Science and Technology, 78 (15), pp.253-263. [in Persian].
[6] Nasrollah Zadeh Masouleh, A., Ghorbani-HasanSaraei, A., Amiri, E. and Habibi, F., 2021. Comparison the effect of nitrogen fertilizer and parboiling process on heavy metals of rice grain. Journal of food science and technology (Iran), 18(114), pp.359-370. [in Persian].
[7] Messia, M.C., Reale, A., Maiuro, L., Candigliota, T., Sorrentino, E. and Marconi, E., 2016. Effects of pre-fermented wheat bran on dough and bread characteristics. Journal of Cereal Science, 69, pp.138-144.
[8] Coda, R., Kärki, I., Nordlund, E., Heiniö, R.L., Poutanen, K. and Katina, K., 2014. Influence of particle size on bioprocess induced changes on technological functionality of wheat bran. Food microbiology, 37, pp.69-77.
[9] Sharma, H. R., Chauhan, G. S., & Agrawal, K. (2004). Physico-chemical characteristics of rice bran processed by dry heating and extrusion cooking. International Journal of Food Properties, 7(3), 603-614.
[10] Sharafi, K., Yunesian, M., Nodehi, R. N., Mahvi, A. H., Pirsaheb, M., & Nazmara, S. (2019). The reduction of toxic metals of various rice types by different preparation and cooking processes–Human health risk assessment in Tehran households, Iran. Food chemistry, 280, 294-302.
[11] Kaur, S., Sharma, S., Dar, B.N. and Singh, B., 2012. Optimization of process for reduction of antinutritional factors in edible cereal brans. Food science and technology international, 18(5), pp.445-454.
[12] Majzoobi, M., Nematolahi, Z. and Farahnaky, A., 2013. Effect of hydrothermal treatment on decreasing the phytic acid content of wheat bran and on physical and sensory properties of biscuits. Iranian Journal of Nutrition Sciences & Food Technology, 8(3), pp.171-178. [in Persian].
[13] Sim, G.Y., Lee, S.U. and Lee, J.W., 2020. Enhanced extraction of phytic acid from rice hulls with enzymatic treatment and production of ethanol from reducing sugars in hydrolyzed rice hulls after extraction of phytic acid. Food science and technology (LWT), 133, p.110111.
[14] Khalajian, S. and GHIASSI, T.B., 2021. Effects of Extrusion on Phytic Acid Reduction of Hydrothermal and Fermented Wheat Brans. Iranian Journal of Nutrition Sciences & Food Technology, 16(3), pp.75-84. [in Persian].
[15] Mohammadi, F., Marti, A., Nayebzadeh, K., Hosseini, S.M., Tajdar-Oranj, B. and Jazaeri, S., 2021. Effect of washing, soaking and pH in combination with ultrasound on enzymatic rancidity, phytic acid, heavy metals and coliforms of rice bran. Food chemistry, 334, p.127583.
[16] Alajaji, S.A. and El-Adawy, T.A., 2006. Nutritional composition of chickpea (Cicer arietinum L.) as affected by microwave cooking and other traditional cooking methods. Journal of Food Composition and Analysis, 19(8), pp.806-812.
[17] De Boland, A.R., Garner, G.B. and O'Dell, B.L., 1975. Identification and properties of phytate in cereal grains and oilseed products. Journal of Agricultural and Food Chemistry, 23(6), pp.1186-1189.
[18] Irakli, M., Lazaridou, A. and Biliaderis, C.G., 2020. Comparative evaluation of the nutritional, antinutritional, functional, and bioactivity attributes of rice bran stabilized by different heat treatments. Foods, 10(1), p.57.
[19] Asad, S., Jabeen, A., Aga, M.B., Majid, D., Jan, N., Amin, T. and Mehraj, F., 2021. Microwave stabilization and process optimization of rice bran cultivar Jhelum. Journal of Food Processing and Preservation, 45(7), p.e15659.
[20] Akbari, E. and Jahadi, M., 2021. The Effect of Replacing Low Phytate Rice Bran on Physicochemical Properties of Burger Chicken. Journal of food science and technology (Iran), 18(118), pp.237-247.
[21] Shindoh, K. and Yasui, A., 2003. Changes in cadmium concentration in rice during cooking. Food science and technology research, 9(2), pp.193-196.
[22] Naseri, M., Rahmanikhah, Z., Beiygloo, V. and Ranjbar, S., 2018. Effects of two cooking methods on the concentrations of some heavy metals (cadmium, lead, chromium, nickel and cobalt) in some rice brands available in Iranian Market. Journal of Chemical Health Risks, 4(2).
[23] Li, S., Li, R., Tang, Y. and Chen, G., 2019. Microwave-induced heavy metal removal from dewatered biosolids for cost-effective composting. Journal of Cleaner Production, 241, p.118342.
[24] Kumar, V., Sinha, A.K., Makkar, H.P. and Becker, K., 2010. Dietary roles of phytate and phytase in human nutrition: A review. Food chemistry, 120(4), pp.945-959.
[25] Kenawy, I.M.M., Abou El-Reash, Y.G., Hassanien, M.M., Alnagar, N.R. and Mortada, W.I., 2018. Use of microwave irradiation for modification of mesoporous silica nanoparticles by thioglycolic acid for removal of cadmium and mercury. Microporous and Mesoporous Materials, 258, pp.217-227.
[26] Rizk, L.F., Doas, H.A. and Elsakr, A.S., 1994. Chemical composition and mineral content of rice bran of two egyptian rice varieties heated by microwave. Food/Nahrung, 38(3), pp.273-277.