پایداری اکسیداتیو روغن آفتابگردان غنی شده با فلاونوئیدهای مرکبات استخراج شده با استفاده از نانولوله های کربنی چند جداره در طی سرخ کردن

نویسندگان
1 گروه علوم و صنایع غذایی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، مازندران، ایران
2 گروه شیمی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، مازندران، ایران
3 گروه علوم و فنون زیستی و زیست محیطی، دانشگاه سالنتو، لچه، ایتالیا
چکیده
هدف از این مطالعه مقایسه کارایی ترکیبات فنلی پوست مرکبات استخراج شده با استفاده از نانولوله های کربنی چند جداره کربوکسیله (MWCNT-COOH) با آنتی اکسیدان های مصنوعی رایج [بوتیل هیدروکسی آنیزول (BHA) و بوتیل هیدروکسی تولوئن (BHT)] در تثبیت روغن آفتابگردان (SO) بود. در طول سرخ کردن (5±180 درجه سانتیگراد، 24 ساعت). برای ارزیابی فعالیت آنتی اکسیدانی این ترکیبات، محتویات کل فنول و فلاونوئید، قدرت کاهش، فعالیت مهار ABTS، توانایی تثبت بتاکاروتن، و فعالیت مهار رادیکال 1، 1-دی فنیل-2-پیکریل هیدرازیل (DPPH) اندازه گیری شد. عصاره ها در غلظت های مختلف (100-1000 پی پی ام) با SO ترکیب شدند و هر دو آنتی اکسیدان مصنوعی در 200 پی پی ام استاندارد شدند. پایداری حرارتی-اکسیداتیو با ارزیابی تغییر در مقدار پراکسید (PV)، رنگ، محتوای اسید چرب آزاد (FFA)، مقدار داین کونژوگه (CDV)، و اسید تیوباربیتوریک (TBA) مورد بررسی قرار گرفت. عصاره پوست پرتقال تلخ (BPE) محتوای بیشتری از ترکیبات فنلی و فعالیت آنتی اکسیدانی را نشان داد. در 1000 ppm، محتوای FFA، PV، TBA و CDV کمتری را نشان داد. می توان از آن به عنوان جایگزینی برای آنتی اکسیدان های مصنوعی استفاده کرد. در نتیجه، ترکیبات فنلی پوست مرکبات استخراج شده با MWCNT-COOH می توانند به عنوان نگهدارنده در روغن های سرخ کردنی استفاده شوند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Oxidative stability of sunflower oil enriched with citrus flavonoids extracted using MWCNT-COOH during frying

نویسندگان English

hassan gholizadeh 1
Hasan Tahermansouri 2
Vito Michele Paradiso 3
1 Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Mazandaran, Iran.
2 Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Mazandaran, Iran.
3 Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
چکیده English

The purpose of this study was to compare the efficacy of citrus peel phenolic compounds extracted using carboxylated multi-walled carbon nanotubes (MWCNT–COOH) with common synthetic antioxidants [butylhydroxyanisole (BHA) and butylhydroxytoluene (BHT)] in stabilizing sunflower oil (SO) during frying (180 ± 5 °C, 24 h). To evaluate the antioxidant activity of these compounds, total phenolic, and flavonoid contents, reducing power, ABTS scavenging activity, β-carotene bleaching ability, and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity were measured. Extracts were combined at various concentrations (100-1000 ppm) with SO, and both synthetic antioxidants were standardized at 200 ppm. Thermal-oxidative stability was investigated by assessing the change in peroxide value (PV), color, free fatty acid (FFA) content, conjugated diene value (CDV), and thiobarbituric acid (TBA). Bitter orange peel extract (BPE) displayed a higher content of phenolic compounds and antioxidant activity. At 1000 ppm, it showed a lower FFA content, PV, TBA, and CDV. It can be used as an alternative to synthetic antioxidants. As a result, citrus peel phenolic compounds extracted with MWCNT–COOH can be used as preservatives in frying oils.

کلیدواژه‌ها English

MWCNT-COOH
flavonoids
Antioxidant properties
Thermal stability
Sunflower oil
1. Wang, D., et al., Limonene, the compound in essential oil of nutmeg displayed antioxidant effect in sunflower oil during the deep‐frying of Chinese Maye. Food Science & Nutrition, 2020. 8(1): p. 511-520.
2. Wang, Y., et al., Effect of new frying technology on starchy food quality. Foods, 2021. 10(8): p. 1852.
3. Xu, X., et al., Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry, 2021. 353: p. 129488.
4. Stagos, D., Antioxidant activity of polyphenolic plant extracts. 2019, MDPI. p. 19.
5. Khan, M.K. and O. Dangles, A comprehensive review on flavanones, the major citrus polyphenols. Journal of food composition and analysis, 2014. 33(1): p. 85-104.
6. Jeong, S.-M., et al., Effect of heat treatment on the antioxidant activity of extracts from citrus peels. Journal of agricultural and food chemistry, 2004. 52(11): p. 3389-3393.
7. Ghasemi, K., Y. Ghasemi, and M.A. Ebrahimzadeh, Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak J Pharm Sci, 2009. 22(3): p. 277-281.
8. Islam, A.-A., et al., Oxidative stability of edible oils via addition of pomegranate and orange peel extracts. Foods and Raw materials, 2018. 6(2): p. 413-420.
9. Orozco-Solano, M., F. Priego-Capote, and M. Luque de Castro, Influence of simulated deep frying on the antioxidant fraction of vegetable oils after enrichment with extracts from olive oil pomace. Journal of agricultural and food chemistry, 2011. 59(18): p. 9806-9814.
10. Anwar, F., et al., Stabilization of sunflower oil with Moringa oleifera leaves under ambient storage. Journal of food lipids, 2007. 14(1): p. 35-49.
11. Gholizadeh, H., et al., The mechanism studies of the adsorption–desorption process of rutin from water/ethanol solution and the extract of bitter orange peel by the carboxylated multiwalled carbon nanotubes. Journal of the Chinese Chemical Society, 2020. 67(4): p. 546-557.
12. Gholizadeh, H., et al., The simultaneous adsorption and desorption of flavonoids from bitter orange peel by the carboxylated multi-walled carbon nanotubes. Carbon Letters, 2019. 29(3): p. 273-279.
13. Delfanian, M., R.E. Kenari, and M.A. Sahari, Evaluation of antioxidant activity of loquat fruit (Eriobotrya japonica lindl.) skin and the feasibility of their application to improve the oxidative stability of soybean oil. Journal of food science and technology, 2016. 53: p. 2244-2252.
14. Arjeh, E., et al., Phenolic compounds of sugar beet (Beta vulgaris L.): Separation method, chemical characterization, and biological properties. Food Science & Nutrition, 2022. 10(12): p. 4238-4246.
15. Karimi Sani, I., et al., Impact of operating parameters and wall material components on the characteristics of microencapsulated Melissa officinalis essential oil. Flavour and Fragrance Journal, 2019. 34(2): p. 104-112.
16. Singleton, V.L., R. Orthofer, and R.M. Lamuela-Raventós, [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, in Methods in enzymology. 1999, Elsevier. p. 152-178.
17. Babbar, N., et al., Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food research international, 2011. 44(1): p. 391-396.
18. Oyaizu, M., Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 1986. 44(6): p. 307-315.
19. Gursoy, N., et al., Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food and Chemical Toxicology, 2009. 47(9): p. 2381-2388.
20. AC, A., Official methods of analysis 16th edition. Association of official analytical chemists. Washington, DC, USA, 1995.
21. Agudelo, C., et al., Phytochemical content and antioxidant activity of grapefruit (Star Ruby): A comparison between fresh freeze-dried fruits and different powder formulations. LWT, 2017. 80: p. 106-112.
22. Bendaoud, H., et al., GC/MS analysis and antimicrobial and antioxidant activities of essential oil of Eucalyptus radiata. Journal of the Science of Food and Agriculture, 2009. 89(8): p. 1292-1297.
23. Narayan, M., et al., Antioxidant effect of anthocyanin on enzymatic and non-enzymatic lipid peroxidation. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 1999. 60(1): p. 1-4.
24. Su, M.-S., Y.-T. Shyu, and P.-J. Chien, Antioxidant activities of citrus herbal product extracts. Food chemistry, 2008. 111(4): p. 892-896.
25. Muthiah, P., M. Umamaheswari, and K. Asokkumar, In vitro antioxidant activities of leaves, fruits and peel extracts of Citrus. International Journal of Phytopharmacy, 2012. 2(1): p. 13-20.
26. Amarowicz, R., et al., Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food chemistry, 2004. 84(4): p. 551-562.
27. Nyam, K., et al., Oxidative stability of sunflower oils supplemented with kenaf seeds extract, roselle seeds extract and roselle extract, respectively under accelerated storage. International Food Research Journal, 2013. 20(2).
28. Lutfullah, G., et al., Antioxidant properties of agro-industrial waste and their use as natural preservative for sunflower oil. Journal of Applied Environmental and Biological Sciences, 2015. 5(11): p. 10-16.
29. Zhang, Y., et al., Oxidative stability of sunflower oil supplemented with carnosic acid compared with synthetic antioxidants during accelerated storage. Food chemistry, 2010. 118(3): p. 656-662.
30. Zia-ur-Rehman, Z.-u.-R., Citrus peel extract-a natural source of antioxidant. 2006.
31. Duh, P.-D., et al., Antioxidant activity of mung bean hulls. Journal of the American Oil Chemists' Society, 1997. 74: p. 1059-1063.
32. El-Aal, H. and F. Halaweish, Food preservative activity of phenolic compounds in orange peel extracts (Citrus sinensis L.). 2010.
33. SULIEMAN, A.E.R.M., A. El‐Makhzangy, and M.F. Ramadan, Antiradical performance and physicochemical characteristics of vegetable oils upon frying of French fries: A preliminary comparative study. Journal of Food Lipids, 2006. 13(3): p. 259-276.
34. Bou, R., et al., Quality assessment of frying fats and fried snacks during continuous deep-fat frying at different large-scale producers. Food Control, 2012. 27(1): p. 254-267.