استفاده از نانولوله های کربنی چند جداره به عنوان جاذب برای استخراج فلاونوئیدها از پوست گریپ فروت

نویسندگان
1 گروه علوم و صنایع غذایی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، مازندران، ایران
2 گروه علوم غذایی، دانشگاه ماساچوست، آمهرست، MA 01003
3 گروه شیمی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، مازندران، ایران.
4 دانشکده بهداشت عمومی، موسسه تحقیقاتی نوآوری سلامت کرتین، دانشگاه کرتین، جعبه GPO U1987، پرت 6845، استرالیای غربی، استرالیا.
چکیده
این مطالعه نانولوله های کربنی چند جداره کربوکسیله (MWCNTs-COOH) را به عنوان جاذب برای استخراج فلاونوئیدها از پوست گریپ فروت مورد استفاده قرار داد. تاثیر pH محلول و شرایط دفع بر راندمان استخراج مورد بررسی قرار گرفت. علاوه بر این، طیف‌سنجی فروسرخ تبدیل فوریه، گرما سنجی حرارتی، طیف‌سنجی مرئی UV، و میکروسکوپ الکترونی روبشی برای مشخص کردن نانولوله‌های کربنی استفاده شد. پس از پنج چرخه، درصد دفع فلاونوئیدها 82.7٪ بود. نتایج HPLC نشان داد که نارینگین فلاونوئید غالب در عصاره گریپ فروت و به دنبال آن روتین و کوئرستین بود. نتایجی در مورد مکانیسم جذب نارینگین به MWCNT-COOH با استفاده از معادله ایزوترم فروندلیخ برای مدل سازی نتایج به دست آمد. نانولوله‌های کربنی توسعه‌یافته در این مطالعه، یک روش مقرون‌به‌صرفه و ساده برای استخراج ترکیبات کاربردی با ارزش افزوده از ضایعات مواد غذایی ارائه می‌کنند و در نتیجه پایداری و دوام اقتصادی عرضه مواد غذایی را بهبود می‌بخشند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Application of multi-walled carbon nanotubes as sorbents for the extraction of flavonoids from Grapefruit peel

نویسندگان English

hassan gholizadeh 1
David Julian McClements 2
Hasan Tahermansouri 3
Vijay Jayasena 4
Ahmad Shahidi 1
1 Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Mazandaran, Iran
2 Department of Food Science, University of Massachusetts, Amherst, MA 01003
3 Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Mazandaran, Iran.
4 School of Public Health, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia.
چکیده English

This study developed carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) as sorbents to extract flavonoids from grapefruit peel. The impact of solution pH and desorption conditions on extraction efficiency was investigated. In addition, Fourier transforms infrared spectroscopy, thermogravimetry, UV-visible spectroscopy, and scanning electron microscopy were used to characterize the carbon nanotubes. After five cycles, the desorption percentage of flavonoids was 82.7%. HPLC analysis indicated that naringin was the dominant flavonoid in the grapefruit extracts, followed by rutin and quercetin. Insights into the adsorption mechanism of naringin to the MWCNT-COOH were obtained using the Freundlich isotherm equation to model the results. The carbon nanotubes developed in this study offer a cost-effective and straightforward method of extracting value-added functional ingredients from food waste, thereby improving the sustainability and economic viability of the food supply.

کلیدواژه‌ها English

Grapefruit
multi-walled carbon nanotubes
flavonoids
Adsorption
desorption
Food Waste
1. Cirmi S, Navarra M, Woodside JV, Cantwell MM (2018) Citrus fruits intake and oral cancer risk: A systematic review and meta-analysis. Pharmacol Res 133:187–194.
2. Rafiq S, Rajkumari K, Sofi SA, Bashi rN, Nazir F, Ahmad-Nayak G (2018) G. Citrus peel as a source of functional ingredient: A review. J Saudi Soc Agric Sci. 17, 351-358.
3. Manthey JA, Grohmann K (2001) Phenols in Citrus Peel Byproducts. Concentrations of Hydroxycinnamates and Polymethoxylated Flavones in Citrus Peel Molasses. J Agric Food Chem 49, 3268-3273.
4. Zhang L, Tu ZC, Xie X, Wang H, Wang ZX, Sha XM, Lu Y (2017) Jackfruit (Artocarpus heterophyllus Lam.) peel: A better source of antioxidants and a-glucosidase inhibitors than pulp, flake and seed, and phytochemical profile by HPLC-QTOF-MS/MS. Food Chem 234, 303-313.
5. Cristóbal-Luna JM, Álvarez-González I, Madrigal-Bujaidar E, Chamorro-Cevallos G (2018) Grapefruit and its biomedical, antigenotoxic and chemopreventive properties. Food Chem Toxicol 19: 432–438.
6. Isabel A, Ribeiro Maria H, Ribeiro L (2008) Naringin and naringenin determination and control in grapefruit juice by a validated HPLC method. Food Control 19, 432-438.
7. Lavrador P, Aspar GVM, Mano JF (2018) Bioinspired bone therapies using naringin: applications and advances. Drug Discov Today 23, 1293-1304.
8. Viswanatha GL, Shylaja H, Moolemath Y (2017) The beneficial role of Naringin a citrus bioflavonoid, against oxidative stress-induced neurobehavioral disorders and cognitive dysfunction in rodents: A systematic review and meta–analysis. Biomed Pharmacother 94, 909–929
9. MaiX, Liu Y, Tang X, Wang L, Lin Y, Zeng H, Luo L, Fan H, Li P (2020) Sequential extraction and enrichment of flavonoids from Euonymus alatus by ultrasonic-assisted polyethylene glycol-based extraction coupled to temperature-induced cloud point extraction. Ultrason Sonochem 66, 105073.
10. Ming-ZhuaG, Qi C, Li-Tao W, Yao M, LianY, Yan-Yan L, Yu-Jie F (2020) A green and integrated strategy for enhanced phenolic compounds extraction from mulberry (Morus alba L.) leaves by deep eutectic solvent. Microchem J 154, 104598.
11. Hamed YS, Abdin M, Akhtar HMS, Chen D, Wan P, Chen G, Zeng X (2019) A method for the extraction of chlorophyll from leaf tissue without maceration. S Afr J Bot 124, 1332-1334.
12. Yang YC, Wang CS, Wei MC (2019) Kinetics and mass transfer considerations for an ultrasound-assisted supercritical CO2 procedure to produce extracts enriched in flavonoids from Scutellariabarbata. J CO2 Util 32, 219-231.
13. Zhao XF, Duan FF, Cui PP, Yang YZ, Liu XG, Hou XL (2018) A molecularly-imprinted polymer decorated on graphene oxide for the selective recognition of quercetin. New Carbon Mater 33, 529-543.
14. Gholizadeh H, Ghorbani-HasanSaraei A, Tahermansouri H, Shahidi S-A (2020)The mechanism studies of the adsorption–desorption process of rutin from water/ethanol solution and the extract of bitter orange peel by the carboxylated multiwalled carbon nanotubes. JCCS 67(4), 546-557.
15. Gholizadeh H, Ghorbani-HasanSaraei A, Tahermansouri H, Shahidi S-A (2019) The simultaneous adsorption and desorption of flavonoids from bitter orange peel by the carboxylated multi-walled carbon nanotubes. Carbon Lett 29, 273-279.
16. Alothman ZA, Bahkali AH,Khiyami MA, Alfadul SM, Wabaidur SM, Alam M, Alfarhan BZ (2020) Low-cost biosorbents from fungi for heavy metals removal from wastewater. Sep Sci Technol 55(10), 1766-1775.
17. Azzouz A, Kailasa SK, Lee SS, Rascón AJ, Ballesteros E, Zhang M, Kim KH (2018) Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. Trends Analyt Chem 108, 347-369.
18. Ali I, Alharbic OML, ALOthmand ZA, Al-Mohaimeedd AM, Alwarthan A (2019) Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water. Environ. Res 170, 389-397.
19. Naushad M, Sharma G, Alothman ZA (2019) Photodegradation of toxic dye using Gum Arabic-crosslinked-poly(acrylamide)/Ni(OH)2/FeOOH nanocomposites hydrogel J. Clean. Prod. 241, 118263.
20. Khan MA, Alqadami AA, Wabaidur SM, Siddiqui MR, Jeonb BH, Alshareef SA, Alothman ZA, Hamedelniel AE (2020) Oil industry waste based non-magnetic and magnetic hydrochar to sequester potentially toxic post-transition metal ions from water. J. Hazard. Mater. 400, 123247.
21. Kenawy E-R, Ghfar AA, Wabaidur SM, Khan MA, Siddiqui MR, Alothman ZA, Alqadami AA, Hamid M (2018) Cetyltrimethylammonium bromide intercalated and branched polyhydroxy styrene functionalized montmorillonite clay to sequester cationic dyes. J. Environ. Manage. 219, 285-293.
22. Ibrahim SM, Badawy AA, Essawy HA (2019) Improvement of dyes removal from aqueous solution by Nanosized cobalt ferrite treated with humic acid during coprecipitation. J Nanostruct Chem 9: 281-298.
23. Xiao Dl, Li H, He H, Lin R, Zuo Pl (2014) Adsorption performance of carboxylated multi-wall carbon nanotube-Fe3O4 magnetic hybrids for Cu (II) in water. New Carbon Mater. 29: 15–25.
24. Hobson JP (1969) The role of surface heterogeneity. J Phys Chem 73: 2720-2727.
25. Tahermansouri H, Dehghan Z, Kiani F (2015) Phenol adsorption from aqueous solutions by functionalized multiwalled carbon nanotubes with a pyrazoline derivative in the presence of ultrasound. R. Soc. Chem. 55, 44263-44273.