1. Koistinen H., Kovanen R.M., Hollenberg M.D., Dufour A., Radisky E.S., Stenman U.H., Mirtti T. The roles of proteases in prostate cancer. IUBMB life. 2023;75(6):493-513. doi: 10.1002/iub.2700
2. Couture F. Therapeutic Targeting of the Proteolytic Enzymes. Int J Mol Sci. 2023;24(1): 521.
3. Kalaiselvan P., Dutta D., Konda N.V., Sharma S., Kumar N., Stapleton F., Willcox, M.D. Effect of Deposition and Protease Digestion on the Ex Vivo Activity of Antimicrobial Peptide-Coated Contact Lenses. Nanomater. 2023;13(2):349.
4. Dasari P.K., Gannamaneni S.S., Jahnavi B., Umadevi B., Balaji M.A., Meghana N., Sravani R. Optimization and production of protease using Aspergillus cervinus. World J Pharm Res. 2023;12:2063-2071.
5. Dudani J.S., Warren A.D., Bhatia S.N. Harnessing protease activity to improve cancer care. Annu Rev Cancer Biol. 2018;2:353-376.
6. Erekat N.S. Programmed cell death in cerebellar Purkinje neurons. J Integ. Neurosci. 2022;21(1): 30.
7. Zhang J., Qiao W., Luo Y. Mitochondrial quality control proteases and their modulation for cancer therapy. Med Res Rev. 2023;43(2):399-436.
8. Gurumallesh P., Alagu K., Ramakrishnan B., Muthusamy S.A systematic reconsideration on proteases. Int J Biol Macromol. 2019;128:254-267.
9. Naveed M., Nadeem F., Mehmood T., Bilal M., Anwar Z., Amjad F. Protease—a versatile and ecofriendly biocatalyst with multi-industrial applications: an updated review. Catal Lett. 2021;151: 307-323.
10. Bhakat S. Pepsin-like aspartic proteases (PAPs) as model systems for combining biomolecular simulation with biophysical experiments. RSC advances. 2021;11(18):11026-11047.
11. Meng X., Wang W., Lan T., Yang W., Yu D., Fang X., Wu H.A purified aspartic protease from Akkermansia muciniphila plays an important role in degrading Muc2. Int J Mol Sci. 2019;21(1):72.
12. Herman R.A., Ayepa E., Zhang W.X., Li Z.N., Zhu X., Ackah M., Yuan, S.S., You S., Wang J. Molecular modification and biotechnological applications of microbial aspartic proteases. Crit Rev Biotechnol. 2023;1:26.
13. Hailemichael F. Production and Industrial Application of Microbial Aspartic Protease: A Review. IJFET. 2021;5(2):85-90
14. Ashraf M., Hussain N., Baqar Z., Bilal M., Kumar A., Ferreira L.F R., Iqbal H.M. Bioprospecting microbial proteases in various industries/sectors. In Microbial Biomolecules. 2023. (pp. 301-324). Academic Press.
15. Silva R.D.S., Segura W.D., Oliveira R.S., Xander P., Batista W. L. Characterization of Aspartic Proteases from Paracoccidioides brasiliensis and Their Role in Fungal Thermo-Dimorphism. J Fungus 2023; 9(3): 375.
16. Razzaq A., Shamsi S., Ali A., Ali Q., Sajjad M., Malik A., Ashraf, M. Microbial proteases applications. Frontiers in Bioeng. Biotech. 2019;7,110.
17. Cruz R., Huesgen P., Riley S.P., Wlodawer A., Faro C., Overall C.M., Martinez J.J., Simões I. RC1339/APRc from Rickettsia conorii is a novel aspartic protease with properties of retropepsin-like enzymes. PLoS pathogens. 2014;10(8):e1004324.
18. Chen M.T., Lu Y.Y., Weng T.M. Comparison of milk-clotting activity of proteinase produced by Bacillus subtilis var, natto and Rhizopus oligosporus with commercial rennet. AJAS. 2010;23(10):1369-1379.
19. An Z., He X., Gao W., Zhao W., Zhang W. Characteristics of miniature Cheddar‐Type Cheese made by microbial rennet from Bacillus amyloliquefaciens: A comparison with commercial calf rennet. J Food Sci. 2014;79(2):M214-M221.
20. Juárez-Montiel M., Tesillo-Moreno P., Cruz-Angeles A., Soberanes-Gutiérrez V., Chávez-Camarillo G., Ibarra J.A., Hernández Rodríguez C., Villa-Tanaca L. Heterologous expression and characterization of the aspartic endoprotease Pep4um from Ustilagomaydis, a homolog of the human Chatepsin D, an important breast cancer therapeutic target. Mol Biol Rep. 2018;45:1155–1163.
21. Silva R.D.S., Segura W.D., Oliveira R.S., Xande P., Batista W.L. Characterization of Aspartic Proteases from Paracoccidioides brasiliensis and Their Role in Fungal Thermo-Dimorphism. Journal of Fungi. 2023;9(3):p.375.
22. Yao X., Xiong W., Ye T., Wu Y. Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis. JXB. 2012;63(7):2579-2593.
23. Ahn J., Cao M.J., Yu Y.Q., Engen J.R. Accessing the reproducibility and specificity of pepsin and other aspartic proteases. Biochim Biophys Acta -Proteins and Proteomics. 2013;1834(6):1222-1229.
24. Smith B.L., Flores A., Dechaine J., Krepela J., Bergdall A., Ferrieri P. Gene encoding the group B streptococcal protein R4, its presence in clinical reference laboratory isolates & R4 protein pepsin sensitivity. Indian J Med Res. 2004;119; 213-220.
25. Krysan D J., Tin, E.L., Abeijon C., Kroos L., Fuller R.S. Yapsins are a family of aspartyl proteases required for cell wall integrity in Saccharomyces cerevisiae. Eukaryotic cell. 2005;4(8):1364-1374.
26. Mandujano-González V., Villa-Tanaca L., Anducho-Reyes M.A., Mercado-Flores Y. Secreted fungal aspartic proteases: a review. Rev Iberoam Micol. 2016;33(2):76-82.
27. Wang C., Zheng Y., Liu Z., Qian Y., Li Y., Yang L., Liu S., Liang W., Li J. The secreted FolAsp aspartic protease facilitates the virulence of Fusarium oxysporum f. sp. lycopersici. Front Microbiol. 2023;4:1103418.
28. Liaudet-Coopman E., Beaujouin M., Derocq D., Garcia M., Glondu-Lassis M., Laurent-Matha V., Prebois C., Rochefort H., Vignon F. Cathepsin D. Newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett. 2006;237(2):167-179.
29. Naglik J.R., Challacombe S.J., Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. MMBR. 2003;67(3):400-428.
30. Viterbo A., Harel M., Chet I. Isolation of two aspartyl proteases from Trichoderma asperellum expressed during colonization of cucumber roots. FEMS Microbiol Letters. 2004;238(1):151-158.
31. Minchin S., Lodge J. Understanding biochemistry: structure and function of nucleic acids. Essays Biochem. 2019;63(4):433-456.
32. Askari F., Rasheed M., Kaur, R. The yapsin family of aspartyl proteases regulate glucose homeostasis in Candida glabrata. J Biol Chem. 2022;298(2):101593. doi: 10.1016/j.jbc.2022.101593
33. Talapko, J., Juzbašić, M., Matijević, T., Pustijanac, E., Bekić, S., Kotris, I., Škrlec, I. Candida albicans—The Virulence Factors and Clinical Manifestations of Infection. J Fungi 2021;7:79. https://doi.org/10.3390/jof7020079
34. Petushkova A.I., Zamyatnin Jr A.A. Redox-mediated post-translational modifications of proteolytic enzymes and their role in protease functioning. Biomol. 2020;10(4):650.
35. Kangwa M., Salgado J.A.G., Fernandez-Lahore H.M. Identification and characterization of N-glycosylation site on a Mucor circinelloides aspartic protease expressed in Pichia pastoris: effect on secretion, activity and thermo-stability. AMB Express. 2018;8:1-13.
36. Reily C., Stewart T.J., Renfrow M.B., Novak J. Glycosylation in health and disease. Nat Rev Nephrol. 2019;15(6):346-366.
37. Forrest S., Welch M. Arming the troops: Post-translational modification of extracellular bacterial proteins. Sci Prog. 2020;103(4):0036850420964317. doi: 10.1177/0036850420964317
38. Pietrella D., Rachini A., Pandey N., Schild L., Netea M., Bistoni F., Hube B., Vecchiarelli A. The inflammatory response induced by aspartic proteases of Candida albicans is independent of proteolytic activity. Infect Immun. 2010;78(11):4754-4762.
39. Martín J.F., Liras P., Sánchez S. Modulation of gene expression in actinobacteria by translational modification of transcriptional factors and secondary metabolite biosynthetic enzymes. Front Microbiol. 2021;12:630694.
40. Lin, A.E., Guttman J.A. The Escherichia coli adherence factor plasmid of enteropathogenic Escherichia coli causes a global decrease in ubiquitylated host cell proteins by decreasing ubiquitin E1 enzyme expression through host aspartyl proteases. Int J Biochem Cell Biol. 2012;44(12):2223-2232.
41. Bairwa G., Kaur R.A novel role for a glycosylphosphatidylinositol‐anchored aspartyl protease, CgYps1, in the regulation of pH homeostasis in Candida glabrata. Mol Microbiol. 2011;79(4):900-913.
42. Singh R., Mittal A., Kumar M., Mehta P. K. Microbial proteases in commercial applications. J Pharm Chem Biol Sci. 2016;4(3):365-374.
43. Fazouane-Naimi F., Mechakra A., Abdellaoui R., Nouani A., Daga S.M., Alzouma A.M., Gais S., Penninckx M.J. Characterization and cheese-making properties of rennet-like enzyme produced by a local Algerian isolate of Aspergillus niger. Food Biotech. 2010;24(3):258-269.
44. Deng L., Wang Z., Yang S., Song J., Que F., Zhang H., Feng F. Improvement of functional properties of wheat gluten using acid protease from Aspergillus usamii. PLoS One. 2016;11(7).e0160101.
45. Steiner E., Becker T., Gastl M. Turbidity and haze formation in beer—Insights and overview. J Inst Brew. 2010;116:360-368.
46. Goode D.L., Wijngaard H.H., Arendt E.K. Mashing with unmalted barley-impact of malted barley and commercial enzyme (Bacillus spp.) additions. Technical Quarterly & the MBAA Communicator. 2005;42:184–198.
47. Pinelo M., Zeuner B., Meyer A.S. Juice clarification by protease and pectinase treatments indicates new roles of pectin and protein in cherry juice turbidity. Food Bioprod Process. 2010;88(2-3):259-265.
48. Wang S., Zhang P., XueY., Yan Q., Li, X., Jiang Z. Characterization of a Novel Aspartic Protease from Rhizomucor miehei Expressed in Aspergillus niger and Its Application in Production of ACE-Inhibitory Peptides. Foods. 2021;10:2949.
49. Byarugaba-Bazirake G.W., van Rensburg P., Kyamuhangire W. The influence of commercial enzymes on wine clarification and on the sensory characteristics of wines made from three banana cultivars. Am J Biotechnol Mol Sci. 2013;3(3):41-62.
50. Marangon M., Van Sluyter S.C., Robinson E.M.C., Muhlack R.A., Holt H.E., Haynes P.A., Godden P. W., Smith P.A., Waters E. J. Degradation of white wine haze proteins by Aspergillopepsin I and II during juice flash pasteurization. Food Chem. 2012;135:1157-1165.
51. Vishwanatha K., Rao A.A., Singh S.A. Acid protease production by solid-state fermentation using Aspergillus oryzae MTCC 5341: optimization of process parameters. J Ind Microbiol Biotechnol. 2010;37:129-138.
52. Daniel Y., Ameha K. Production and Characterization of Bacterial Protease from Isolates of Soil and Agro-Industrial Wastes. Haramaya University.2014.
53. Al-Manhel A.J.A. Application of Microbial Enzymes in Dairy Products: A Review. Basrah J Agric Sci. 2018;31:20-30
54. Guo Z.P., Zhang L., Ding Z.Y., Wang Z. X. , Shi G.Y. Improving the performance of industrial ethanol-producing yeast by expressing the aspartyl protease on the cell surface. Yeast. 2010;27:1017-1027.
55. Sumantha A., Larroche C., Pandey A. Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Tech Biotechnol. 2006;44:211.
56. Waters E.J., Alexander G., Muhlack R., Pocock K., Colby C., o'Neill B., Høj P., Jones P. Preventing protein haze in bottled white wine. Aust J Grape Wine Res. 2008;11:215-225.
57. Rao M.B., Tanksale A.M., Ghatge M.S., Deshpande V.V. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev. 1998;62(3):597–635.
58. Babiker E.E., Fujisawa N., Matsudomi N., Kato A. Improvement in the functional properties of gluten by protease digestion or acid hydrolysis followed by microbial transglutaminase treatment. J Agric Food Chem. 1996;44(12):3746–3750.
59. M’hir S., Rizzello C.G., Di Cagno R., Cassone A., Hamdi, M. Use of selected enterococci and Rhizopus oryzae proteases to hydrolyse wheat proteins responsible for celiac disease. J Appl Microbiol. 2009; 106(2): 421–431.
60. Janssen G., Christis C., Kooy-Winkelaar Y., Edens L., Smith D., van Veelen P., Koning F. Ineffective degradation of immunogenic gluten epitopes by currently available digestive enzyme supplements. PLoS One. 2015;10(6):e0128065.
61. Wei M., Chen P., Zheng P., Tao X., Yu X., Wu D. Purification and characterization of aspartic protease from Aspergillus niger and its efficient hydrolysis applications in soy protein degradation. Microb Cell Fact. 2023;2(1):42. https://doi.org/10.1186/s12934-023-02047-9
62. Zhao G., Ding L.L., Yao Y., Cao Y., Pan Z.H., Kong D.H. Extracellular proteome analysis and flavor formation during soy sauce fermentation. Front. Microbiol. 2018;9:1872.
63. Sun Q., Chen F., Geng F., Luo Y., Gong S., Jiang Z.A. Novel aspartic protease from Rhizomucor miehei expressed in Pichia pastoris and its application on meat tenderization and preparation of turtle peptides. Food Chem. 2018;245:570-577
64. Pietrasik Z., Shand P.J. Effect of aspartic protease from Aspergillus oryzae on the tenderness of beef. Proceedings of the 52nd International Conference of Meat Science and Technology. 2006;475-476.
65. Godessart P., Lannoy A., Dieu M., Van der Verren S.E., Soumillion P., Collet J.F., Remaut H., Renard P., De Bolle X. β-Barrels covalently link peptidoglycan and the outer membrane in the α-proteobacterium Brucella abortus. Nat Microbiol. 2021;6(1):27-33.
66. Joshi M.D., Sidhu G., Pot I., Brayer G.D., Withers S. G., McIntosh L. P. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J Mol Biol. 2000;299(1):255-279.
67. Kasperkiewicz P., Poreba M., Groborz K., Drag M. Emerging challenges in the design of selective substrates, inhibitors and activity‐based probes for indistinguishable proteases. The FEBS Journal. 2017;284(10):1518-1539.
68. Yegin S., Dekker P. Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering. Dairy Sci Technol. 2013;93:565-594.
69. Castillo-Yañez F.J., Pacheco-Aguilar R., Garcia-Carreño F.L., de los Angeles Navarrete-Del M. Characterization of acidic proteolytic enzymes from Monterey sardine (Sardinops sagax caerulea) viscera. Food Chem. 2004;85(3):343-350.
70. Sharma R. Enzyme inhibition: mechanisms and scope. Enzyme Inhibition and Bioapplications. 2012; 3-36. DOI: 10.5772/39273
71. Theron L.W., Divol B. Microbial aspartic proteases: current and potential applications in industry. Appl Microbiol Biotechnol. 2014;98:8853-8868.
72. Razzaq A., Shamsi S., Ali A., Ali Q., Sajjad M., Malik A., Ashraf M. Microbial proteases applications. Front Bioeng Biotechnol. 2019;7:110.