بررسی تاثیر پیش تیمار مایکرویو بر ویژگی‌های آنتی اکسیدانی پروتئین هیدرولیز شده بذر کتان

نویسندگان
1 1- دانشجوی کارشناسی ارشد گروه علوم و مهندسی صنایع غذایی، واحد آزادشهر، دانشگاه آزاد اسلامی، آزادشهر، ایران
2 استادیار مرکز تحقیقاتصنایع غذایی شرق گلستان، واحد آزاد شهر، دانشگاه آزاد اسلامی، آزادشهر، ایران
3 استاد گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده
در این پژوهش تاثیر پیش­تیمار مایکروویو در توان­های 500 و 900 وات بر ویژگی­های آنتی­اکسیدانی (مهار رادیکال DPPH و آنتی اکسیدانی کل) پروتئین هیدرولیز شده بذر کتان در بازه زمانی 2100-30 دقیقه بررسی گردید. در مرحله بعد تاثیر غلظت­های متفاوت (mg/ml 100-20) تیمار بهینه بر ویژگی­های آنتی­اکسیدانی (ظرفیت آنتی اکسیدانی کل، فعالیت احیاء کنندگی یون آهن، مهار رادیکال DPPH و شلاته کنندگی یون آهن) بررسی و با خاصیت آنتی اکسیدانی ویتامین ث به­عنوان یک آنتی اکسیدان سنتزی و پروتئین هیدرولیز نشده بذر کتان مقایسه شد. نتایج نشان داد که پیش­تیمار مایکروویو در توان­ 500 وات به­طور معنی­داری باعث افزایش خواص آنتی اکسیدانی (مهار رادیکال DPPH و آنتی اکسیدانی کل) پروتئین هیدرولیز شده بذر کتان شد اما توان بیشتر مایکروویو (900 وات) باعث کاهش خاصیت آنتی اکسیدانی پروتئین هیدرولیز شده تولیدی نسبت به نمونه بدون اعمال پیش تیمار و یا نمونه با اعمال پیش تیمار مایکروویو با توان 500 وات شد. نمونه با اعمال پیش تیمار مایکروویو با توان 500 وات و رمان هیدرولیز 180 دقیقه به­نوان تیمار بهینه با بیشترین ظرفیت آنتی اکسیدانی کل و فعالیت مهار رادیکال آزاد DPPH به­عنوان تیمار بهینه انتخاب شد. بررسی تاثیر غلظت بر خواص آنتی اکسیدانی پروتئین هیدرولیز شده نشان داد که بیشترین مهار رادیکال آزاد DPPH (7/52 درصد)، ظرفیت آنتی اکسیدانی کل (35/1 جذب در 695 نانومتر)، فعالیت احیاء کنندگی یون آهن (859/0 جذب در 700 نانومتر) در غلظت (mg/ml) 60 و بیشترین فعالیت شلاته­کنندگی یون آهن (83/50 درصد) در غلظت (mg/ml) 80 حاصل شد. در نتیجه پروتئین هیدرولیز شده بذر کتان با دارا بودن قابلیت آنتی اکسیدانی مناسب قابلیت کاربرد در تولید محصولات غذایی فراسودمند، مکمل­های غذایی ورزشکاران و سالمندان را دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation the effect of microwave pretreatment on the antioxidant properties of flaxseed protein hydrolysate

نویسندگان English

Nader Sanadgol 1
Seyyed Hossein Hosseini Ghaboos 2
Alireza Sadeghi Mahoonak 3
1 M.Sc student, Department of Food Science and Engineering, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran
2 Assistant Professor, Food Science and Technology Research Center of east Golestan, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran
3 Professor, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources
چکیده English

In this study, the effect of microwave pretreatment at the power of 500 and 900 W on the antioxidant properties (DPPH radical scavenging activity and total antioxidant capacity) of flaxseed protein hydrolysate was investigated in the period of 30-210 minutes. In the next step, the effect of different concentrations (20-100 mg/ml) of the optimum treatment on the antioxidant properties (total antioxidant capacity, Fe reducing power, DPPH radical scavenging activity and Fe chelating activity) was investigated and was compared with the antioxidant capacity of vitamin C as a synthetic antioxidant and unhydrolyzed flaxseed protein. The results showed that microwave pretreatment at a power of 500 W significantly increased the antioxidant properties (DPPH radical scavenging activity and total antioxidant capacity) of flaxseed protein hydrolysate, but higher microwave power (900 W) led to reduction of antioxidant activity in comparison to the sample without pretreatment or the sample with microwave pretreatment with a power of 500 W. The sample with microwave pretreatment with a power of 500 W and hydrolysis time of 180 minutes was selected as the optimum treatment with the highest total antioxidant capacity and DPPH radical scavenging activity. Investigating the effect of concentration on the antioxidant properties of hydrolyzed protein showed that the highest DPPH radical scavenging activity (52.7 %), total antioxidant capacity (1.35 absorbance at 695 nm), Fe reducing power (0.859 absorbance at 700 nm) were achieved at the concentration of 60 (mg/ml) and the highest Fe chelating activity (50.83%) was obtained at the concentration of 80 (mg/ml). As a result, the flaxseed protein hydrolysate with considerable antioxidant capacity, can be used in the production of functional food products, nutritional supplements for athletes and the elderly.

کلیدواژه‌ها English

Antioxidant
Flax seed protein
pancreatin
Protein hydrolysate
Microwave
1. Di Meo, S., & Venditti, P. (2020). Evolution of the knowledge of free radicals and other oxidants. Oxidative Medicine and Cellular Longevity, 2020.
2. Villeneuve, P., Bourlieu-Lacanal, C., Durand, E., Lecomte, J., McClements, D. J., & Decker, E. A. (2023). Lipid oxidation in emulsions and bulk oils: A review of the importance of micelles. Critical Reviews in Food Science and Nutrition, 63(20), 4687-4727.
3. Kaveh, S., Sadeghi Mahoonak, A., Erfani Moghadam, V., Ghorbani, M., Gholamhosseinpour, A., Raeisi, M. (2023). Evaluation the antioxidant properties of purified bioactive peptides from the wastes of skipjack fish (Katsuwonus pelamis) processing, by pepsin and trypsin digestive enzymes. Journal of Food Science and Technology, 20 (141):200-222.
4. Kaveh, S., Mahoonak, A. S., Ghorbani, M., & Jafari, S. M. (2022). Fenugreek seed (Trigonella foenum graecum) protein hydrolysate loaded in nanosized liposomes: Characteristic, storage stability, controlled release and retention of antioxidant activity. Industrial Crops and Products, 182, 114908.
5. Jamdar, S. N., Rajalakshmi, V., Pednekar, M. D., Juan, F., Yardi, V., & Sharma, A. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food chemistry, 121(1), 178-184.
6. Ding, Q., Zhang, T., Niu, S., Cao, F., Wu-Chen, R. A., Luo, L., & Ma, H. (2018). Impact of ultrasound pretreatment on hydrolysate and digestion products of grape seed protein. Ultrasonics Sonochemistry, 42, 704-713.
7. Karami, Z., Peighambardoust, S. H., Hesari, J., Akbari-Adergani, B., & Andreu, D. (2019). Antioxidant, anticancer and ACE-inhibitory activities of bioactive peptides from wheat germ protein hydrolysates. Food Bioscience, 32, 100450.
8. Sadeghi Mahoonak, A.R. and Kaveh, S. (2022). Assessment of ACE-inhibitory and Antioxidant Activities of the Peptide Fragments from Pumpkin Seeds. Iranian Journal of Nutrition Sciences & Food Technology, 17(3), 45-56.
9. Kaveh, S., Sadeghi, M.A., Ghorbani, M., Jafari, M. and Sarabandi, K. (2019 a). Optimization of factors affecting the antioxidant activity of fenugreek seed's protein hydrolysate by response surface methodology. Iranian Journal of Nutrition Sciences & Food Technology, 14(1).
10. Manafi, D.Y.M. and Mazaheri, T.M. (2014). Production of analogue UF white cheese by replacement of milk fat with margarine. Journal of food research. 23(4), 545-552.
11. Kaveh, S., Gholamhosseinpour, A., Hashemi, S. M. B., Jafarpour, D., Castagnini, J. M., Phimolsiripol, Y., & Barba, F. J. (2023). Recent advances in ultrasound application in fermented and non‐fermented dairy products: Antibacterial and bioactive properties. International Journal of Food Science & Technology.
12. Saha, M., Eskicioglu, C., & Marin, J. (2011). Microwave, ultrasonic and chemo-mechanical pretreatments for enhancing methane potential of pulp mill wastewater treatment sludge. Bioresource technology, 102(17), 7815-7826.
13. Ketnawa, S., & Liceaga, A. M. (2017). Effect of microwave treatments on antioxidant activity and antigenicity of fish frame protein hydrolysates. Food and bioprocess technology, 10, 582-591.
14. Fadimu, G. J., Gill, H., Farahnaky, A., & Truong, T. (2021). Investigating the impact of ultrasound pretreatment on the physicochemical, structural, and antioxidant properties of lupin protein hydrolysates. Food and Bioprocess Technology, 14(11), 2004-2019.
15. Kaveh, S., Sadeghi Mahoonak, A., Erfanimoghaddam, V., Ghorbani, M., Gholamhossein pour, A A, Raeisi, M. (2024). Optimization of the effect of hydrolysis conditions and type of protease on the degree of hydrolysis and antioxidant properties of the protein hydrolysate from the skipjack fish (Katsuwonus pelamis) viscera by the response surface methodology. Journal of Food Science and Technology. 20 (144): 131-152.
16. Prieto, P., Pineda, M. and Aguilar, M. )1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, 269(2), 337-341.
17. Kaveh, S., Sadeghi, M.A., Ghorbani, M., Jafari, M. and Sarabandi, K. (2019 b). Optimization of production of antioxidant peptides using enzymatic hydrolysis of fenugreek seed. Journal of Food Science and Technology. 15 (84): 75-88.
18. Kaveh, S., Sadeghi Mahoonak, A. and Sarabandi, K. )2020(. The Effect of Solvent Type, Time and Extraction Method on the Chemical Compositions and Antioxidant Activity of Eggplant Peel Extract. Karafan Quarterly Scientific Journal. 17(2): 129-141
19. Kaveh, S., Sadeghi, M.A., Ghorbani, M., Jafari, M. and Sarabandi, K. (2019 c). Antioxidant properties of fenugreek bioactive peptides prepared with pancreatin enzyme. Food Engineering Research. 18(67): 103-122.
20. Batista, I., Ramos, C., Coutinho, J., Bandarra, N. M., & Nunes, M. L. (2010). Characterization of protein hydrolysates and lipids obtained from black scabbardfish (Aphanopus carbo) by-products and antioxidative activity of the hydrolysates produced. Process Biochemistry, 45(1), 18-24.
21. Bakhshabadi, H., Mirzaei, H., Ghodsvali, A., Jafari, S. M., Ziaiifar, A. M., & Farzaneh, V. (2017). The effect of microwave pretreatment on some physico-chemical properties and bioactivity of Black cumin seeds’ oil. Industrial crops and products, 97, 1-9.
22. Gohi, B. F. C. A., Du, J., Zeng, H. Y., Cao, X. J., & Zou, K. M. (2019). Microwave pretreatment and enzymolysis optimization of the Lotus seed protein. Bioengineering, 6(2), 28.
23. Guo, Y., Zhang, T., Jiang, B., Miao, M., & Mu, W. (2014). The effects of an antioxidative pentapeptide derived from chickpea protein hydrolysates on oxidative stress in Caco-2 and HT-29 cell lines. Journal of Functional Foods, 7, 719-726.
24. Uluko, H., Zhang, S., Liu, L., Tsakama, M., Lu, J., & Lv, J. (2015). Effects of thermal, microwave, and ultrasound pretreatments on antioxidative capacity of enzymatic milk protein concentrate hydrolysates. Journal of Functional Foods, 18, 1138-1146.
25. Noman, A., Qixing, J., Xu, Y., Abed, S. M., Obadi, M., Ali, A. H., ... & Xia, W. (2020). Effects of ultrasonic, microwave, and combined ultrasonic‐microwave pretreatments on the enzymatic hydrolysis process and protein hydrolysate properties obtained from Chinese sturgeon (Acipenser sinensis). Journal of Food Biochemistry, 44(8), e13292.
26. Arabshahi-Delouee, S., & Urooj, A. (2007). Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food chemistry, 102(4), 1233-1240.
27. Mazloomi, N., Sadeghi-mahonak, A.R., Ghorbani, M. and Hoshmand, Gh.R. (2019). Determination of optimal production conditions of antioxidant peptides resulting from hydrolysis of orange kernel protein with alkalase enzyme. Iranian Journal of Nutrition Sciences & Food Technology. 16(88): 343-356.
28. Yang, T., Sun, S., Lin, Q., Ma, M., Luo, F., & Liu, J. (2013). Effects of Microwave Irradiation Pre-Treatment of Egg White Proteins on Ant Oxidative Activity of Their Hydrolysates Prepared with Pepsin. Advance Journal of Food Science and Technology, 5(7), 936-940.
29. Zhang, M., Huang, T. S., & Mu, T. H. (2019). Improvement of thermal, microwave and ultrasonication pretreatment on the production of antioxidant peptides from sweet potato protein via in vitro gastrointestinal digestion. International Journal of Food Science & Technology, 54(7), 2338-2345.
30. Saito, K., Jin, D. H., Ogawa, T., Muramoto, K., Hatakeyama, E., Yasuhara, T., & Nokihara, K. (2003). Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. Journal of Agricultural and Food Chemistry, 51(12), 3668-3674.
31. Zhao, Q., Xiong, H., Selomulya, C., Chen, X. D., Zhong, H., Wang, S., ... & Zhou, Q. (2012). Enzymatic hydrolysis of rice dreg protein: effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food chemistry, 134(3), 1360-1367.
32. Umayaparvathi, S., Meenakshi, S., Vimalraj, V., Arumugam, M., Sivagami, G., & Balasubramanian, T. (2014). Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomedicine & Preventive Nutrition, 4(3), 343-353.
33. Chi, C. F., Hu, F. Y., Wang, B., Li, T., & Ding, G. F. (2015). Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. Journal of Functional Foods, 15, 301-313.
34. Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y., & Nasri, M. (2009). Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food chemistry, 114(4), 1198-1205.
35. Afanas' ev, I. B., Dcrozhko, A. I., Brodskii, A. V., Kostyuk, V. A., & Potapovitch, A. I. (1989). Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochemical pharmacology, 38(11), 1763-1769.
36. Pihlanto, A. (2006). Antioxidative peptides derived from milk proteins. International dairy journal, 16(11), 1306-1314.
37. Xie, Z., Huang, J., Xu, X., & Jin, Z. (2008). Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food chemistry, 111(2), 370-376.
38. Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food chemistry, 102(4), 1317-1327.
39. Cumby, N., Zhong, Y., Naczk, M., & Shahidi, F. (2008). Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food chemistry, 109(1), 144-148.