استخراج اسانس رزماری و استفاده از آن در تهیه بیوکامپوزیت بر پایه فیلم موسیلاژ بذر شنبلیله و پودر پوست بادمجان حاوی نانوذرات مس

نویسندگان
دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران
چکیده
افزودن نانوذرات مس و اسانس رزماری می‌تواند سبب بهبود خواص ساختاری و مکانیکی فیلم‌‌های بر پایه موسیلاژ بذر شنبلیله و پودر پوست بادمجان شود. هدف در این مطالعه تهیه فیلم‌های خوراکی بر پایه موسیلاژ بذر شنبلیله و پودر پوست بادمجان حاوی نانوذرات مس (0، 2، 4 %) وزنی/وزنی و اسانس رزماری(0، 4، 8 %) وزنی/حجمی بود. فیلم‌های خوراکی بر پایه موسیلاژ بذر شنبلیله و پودر پودر پوست بادمجان تهیه شده و نانوذرات مس (0، 2، 4 %) و اسانس رزماری (0، 4، 8 %) به آن افزوده شد. خواص ساختاری و مکانیکی فیلم‌ها تهیه شده بررسی شد. مطابق نتایج به دست آمده با افزایش مقدار نانوذرات مس و اسانس رزماری در فیلم باعت کاهش خواص مکانیکی فیلم‌ها شد. مطابق نتایج به دست آمده با افزایش مقدار نانوذرات مس و اسانس رزماری در فیلم باعت کاهش بافت مکانیکی فیلم‌ها شد. تجزیه و تحلیل پراش اشعه ایکس (XRD) نشان داد که نانوذرات مس به طور فیزیکی با پلیمر موسیلاژ بذر شنبلیله و پودر پوست بادمجان ترکیب شده‌اند باعث تضغیف ساختار کریستالی شده‌اند. نتایج تبدیل فوریه فروسرخ (FTIR) حضور فیزیکی نانوذرات مس را در ماتریس پلیمری تایید کرد. نتایج میکروسکوپ الکترونی روبشی (SEM)نشان داد که مورفولوژی سطح نانوکامپوزیت فیلم نسبت به موسیلاژ بذر شنبلیله و پودر پوست بادمجان ناهمگن است. قرار گرفتن فیلم شناساگر تهیه شده در معرض pHهای مختلف، منجر به تغییر رنگ فیلم‌ها از رنگ قرمز به رنگ زرد گردید. این تغییرات رنگی فیلم‌ها با تغییرات رنگی محلول آنتوسیانین همخوانی داشت. افزودن نانوذرات مس و اسانس رزماری به فیلم‌های خوراکی بر پایه موسیلاژ بذر شنبلیله و پودر پوست بادمجان سبب بهبود فوریه مادون قرمز (FTIR) فیلم‌ها، همچنین موجب تضعیف خواص مکانیکی گردید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Extraction of rosemary essential oil and its use in the preparation of biocomposite based on mucilage film of fenugreek seeds and eggplant skin powder containing copper nanoparticles.

نویسندگان English

fatemeh khakpour
Sajad Pirsa
university
چکیده English

Adding copper nanoparticles and rosemary essential oil can improve the structural and mechanical properties of films based on fenugreek seed mucilage and eggplant skin powder. The aim of this study was to prepare edible films based on mucilage of fenugreek seeds and eggplant skin powder containing copper nanoparticles (0, 2, 4% w/w) and rosemary essential oil (0, 4, 8% w/v). Edible films were prepared based on mucilage of fenugreek seeds and eggplant peel powder, and copper nanoparticles (0, 2, 4%) and rosemary essential oil (0, 4, 8%) were added to it. The structural and mechanical properties of the prepared films were investigated. According to the obtained results, increasing the amount of copper nanoparticles and rosemary essential oil in the film decreased the mechanical properties of the films. According to the obtained results, increasing the amount of copper nanoparticles and rosemary essential oil in the film decreased the mechanical texture of the films. X-ray diffraction (XRD) analysis showed that copper nanoparticles were physically combined with fenugreek seed mucilage polymer and eggplant skin powder, resulting in the strengthening of the crystal structure. Fourier transform infrared (FTIR) results confirmed the physical presence of copper nanoparticles in the polymer matrix. The results of the scanning electron microscope (SEM) showed that the surface morphology of the nanocomposite film is heterogeneous compared to fenugreek seed mucilage and eggplant skin powder. Exposure of the prepared detector film to different pHs led to the change of the color of the films from red to yellow. These color changes of the films were consistent with the color changes of the anthocyanin solution. The addition of copper nanoparticles and rosemary essential oil to edible films based on fenugreek seed mucilage and eggplant skin powder improved the Fourier transform infrared (FTIR) of the films, and also weakened the mechanical properties.

کلیدواژه‌ها English

Edible film
Mucilage
copper nanoparticles and rosemary essential oil
[1] P. Abdolsattari, S.H. Peighambardoust, S. Pirsaa, S.J. Peighambardoust and S.H. (2020).Fasihnia, Investigating microbial properties of traditional Iranian white cheese packed in active LDPE films incorporating metallic and organoclay nanoparticles, Chem Rev Lett 3, 168–174.
[2] S. Pirsa, F. Mohtarami and S. (2020). Kalantari, Preparation of biodegradable composite starch/tragacanth gum/Nanoclay film and study of its physicochemical and mechanical properties, Chem Rev Lett 3, 98–103.
[3] Pirsa, S., Sani, I.K., & Mirtalebi, S.S. (2022). Nano-biocomp&0site based color sensors: Investigation of structure , function, and applications in intelligent food packaging . Food. Packaging and Shelf Life,31, 100789.
[4] I. KarimiSani, S. Pirsa and S¸.Tagı,(2019). Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite ˘ film and evaluation of physical, mechanical and antimicrobial properties by response surface method, Polym Test 79, 106004.
[5] M. Pirouzifard, R.A. Yorghanlu and S. Pirsa, (2020).Production of active film based on potato starch containing Zedo gum and essential oil of Salvia officinalis and study of physical, mechanical, and antioxidant properties, J Thermoplast Compos 33, 915–937.
[6] Sani, I. K., & Alizadeh, M. (2022). Isolated mung bean protein-pectin nanocomposite film containing true cardamom extract microencapsulation/ Ceo2 nanoparticles/ graphite carbon guantum dost: Investigating fluorescence, photocatalytic and antimicrobial properties. Food Packaging and Shelf Life, 33, 100912.
[7] S. Pirsa, I. KarimiSani, M.K. Pirouzifard and A.(2020). Erfani, Smart film based on chitosan/Melissa officinalis essences/pomegranate peel extract to detect cream cheeses spoilage, Food Add Contam A 37 , 634–648.
[8]Saju F, Sivaraman CM (2021) Scope of herbal mucilage in pharmaceutical formulations: a review. Herba Polonica 67(1):46–57.
[9] Rasul, N. H., Asdagh, A., Pirsa, S., Ghazanfarirad , N., & Sani, I.K. (2022). Development of antimicrobial / antioxidant nanocomposite film based on fish skin gelatin and ckickpea protein isolated containing Microencapsulated Nigella sativa essential oil and copper sulfide nanoparticles for extending minced meat shelf life materials Research Express, 9(2), 025306.
[10] Mehrafarin A, Qaderi A, Rezazadeh Sh, Naghdi Badi H,(2010). Noormohammadi Gh and Zand E. Bioengineering of important secondary metabolites and metabolic pathways in fenugreek (Trigonella foenum-graecum L.). J. Medicinal Plants; 9 (35): 1 - 18.
[11] Budavari S.(2001).The merck index: An encyclopedia of chemicals, drugs, and biologicals, 12th ed. Whitehouse Station, N.J. Merk & Co, Inc., p: 854.
[12] Hajimehdipoor H, Sadat-Ebrahimi S E, Amanzadeh Y, Izaddoost M and Givi E.(2010). Identification and Quantitative Determination of 4- Hydroxyisoleucine in Trigonella foenum-graecum L. from Iran. J. Medicinal Plants; 9 (6): 29 - 34.
[13] Niño-Medina G, Urías-Orona V, Muy-Rangel M and Heredia J, 2017. Structure and content of phenolics in eggplant (Solanum melongena)-a review. South African Journal of Botany 111: 161-169
[14] Q.S. Wang and Q.Z. Zhai,(2019). Preparation, characterization and luminescence of (SBA-15)-Ag 2 S nanocomposite material, Main Group Chemistry 18(4), 325–336.
[15] Hassani, D., Sani, I. K., & Pirsa, S. (2023). Nanocomposite Film of Potato Starch and Gum Arabic Containing Boron Oxide Nanoparticles and Anise Hyssop (Agastache foeniculum ) Essential Oil: Investigation of physicochemical and Antimicrobial Properties . Journal of Polymers and the Environment, 1-12. Onment.
[16] M.M.S. Wahsh, A.G.M. Othman, K.R. Awad, E. Girgis, M.R. Mabrouk and F.A.(2019). Morsy, Synthesis and magneto-optical properties of cobalt ferrite/silica nanoparticles doped with Cd 2+ions, Main Group Chemistry 18(4) , 397–410.
[17] Etemidi, H. Rezaei, M. Abdian, A. 2017. Antibacterial and antioxidant potential of rosemary extract in increasing shelf life of rainbow trout, Quarterly Journal of Food Science and Industry, Volume 4, 68.
[18] Braydich-Stolle L, HussainSSchlager JJ, Hofmann M.(2005). In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells. Toxocological Sciences. 88(2): 412–419.
[19] Etemadi, H. Rezaei, M. Abdian, 2007 Antibacterial and antioxidant potential of the extract Rosemary in increasing shelf life of Ghazal fishAlai Ranginkaman, Quarterly Journal of Food Science and Industry,Period, 5, 4 68.
[20] Aqakhani Ghazi, A. Seif Kurdi, S. 2010. Comparison of different extraction methods from rosemary plant, New Research Conference in Chemical Engineering, Mahshahr, Islamic Azad University, Mahshahr branch.
[21] Jiang, C. Li, X. Jiao, Y. Jiang, D. Zhang, L. Fan, B. and Zhang, Q. (2014). Optimization for ultrasound-assisted extraction of polysaccharides with antioxidant activity in vitro from the aerial root of Ficus microcarpa. Carbohydrate Polymers, 110, 10-17.
[22] Taherkhani P, Noori N, Akhondzadeh Basti A, Gandomi H, Alimohammadi M. (2014). Antimicrobial Effects of Kermanian Black Cumin (Bunium persicum Boiss.) Essential Oil in Gouda Cheese Matrix. J. Med. Plants 54 (2): 76 - 86.
[23] Khakpour, F.; Pirsa, S.; Amiri, S. (2023). Modifed Starch/CrO/Lycopene/Gum Arabic Nanocomposite Film: Preparation, Investigation of Physicochemical Properties and Ability to Use as Nitrite Kit. Journal of Polymers and the Environment.
[24] Jiang, G., Hou, X., Zeng, X., Zhang, C., Wu, H., Shen, G., Zhang, Z. (2020). Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. International journal of biological macromolecules, 143, 359-372.
[25] Srinivasan, M; Devipriya, N; Kalpana, K.B; and Menon, V.P.(2009). Lycopene: An antioxidant and radioprotector against radiation-induced cellular damaves in cultured human lymphocytes. Toxicol, 262: 43-49.
[26] Maizura F, Fazilah S, Norziah S and Karim B, (2007). Antibacterial activity and mechanical properties of partially hydrolyzed sago starchealginate edible film containing lemongrass oil. Journal of Food Science 72: 324-330.
[27] Wetzel, B., Haupert, F. & Zhang, M.Q. (2003). Epoxy nanocomposites with high mechanical and tribological performance. Composites Science and Technology, 63(14), 2055-2067.
[28]Kanmani P, Rhim J-W (2014) Development and characterization of carrageenan/grapefruit seed extract composite flms for active packaging. Int J Biol Macromol 68:258–266 53.
[29] Tan Y, Lim S, Tay B, Lee M, Thian E (2015) Functional chitosan-based grapefruit seed extract composite flms for applications in food packaging technology. Mater Res Bull 69:142–146
[30] Phisalaphong, M., & Jatupaiboon, N., (2008). Biosynthesis and characterization of bacteria cellulose–chitosan film. Carbohydrate Polymers, 74(3), 482-488.
[31] Das, S., Das, M. P., & Das, J., 2013. Fabrication of porous chitosan/silver nanocomposite film and its bactericidal efficacy against multi-drug resistant (MDR) clinical isolates. Journal of Pharmacy Research, 6(1), 11-15.
[32] Bikiaris, D.N.; Triantafyllidis, K.S. HDPE/Cu-nanofiber nanocomposites with enhanced antibacterial and oxygen barrier properties appropriate for food packaging applications. Mater
.
[33] Remon, S., Ferrer, A., Marquina, P., Burgos, J., Oria, R., (2000). Use of modified atmospheres to prolong the postharvest life of Burlat cherries at two different degrees of ripeness. Journal of the Science of Food and Agriculture, 80(10,) 1545 – 1552.
[34] Ezati, P., & Rhim, J. W. (2020). pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applications. Food Hydrocolloids, 102, 105629.
[35] Yong, H., Wang, X., Bai, R., Miao, Z., Zhang, X., & Liu, J. (2019). Development of antioxidant and intelligent pHsensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. Food hydrocolloids, 90, 216-224