استفاده از روش‌های هوای داغ، فروسرخ و مایکروویو برای خشک‌کردن جوانه‌های چرخ‌شده نخود

نویسندگان
1 دانشجوی کارشناسی ارشد، گروه علوم و صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران
2 دانشیار، گروه علوم و صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران
3 دانشیار، گروه مهندسی علوم و صنایع غذایی، دانشکده فنی و منابع طبیعی تویسرکان، دانشگاه بوعلی سینا، همدان، ایران
چکیده
فرآیند جوانه‌زنی شامل تغییراتی در ویژگی‌های تغذیه‌ای، بیوشیمیایی و حسی است که باعث بهبود کیفیت و افزایش قابلیت هضم نخود می‌شود. از جوانه‌های چرخ‌شده و خشک‌شده نخود برای تهیه محصولات مختلفی مانند فلافل استفاده می‌شود. لذا در این پژوهش استفاده از روش‌های هوای داغ (دمای 70 درجه سلسیوس)، فروسرخ (توان 250 وات) و مایکروویو (توان 220 وات) برای خشک‌کردن جوانه‌های چرخ‌شده نخود بررسی و مدل‌سازی شد. زمان خشک شدن نمونه‌ها در خشک‌کن فروسرخ از دو خشک‌کن دیگر کمتر بود. متوسط زمان خشک شدن نمونه‌ها در خشک‌کن‌های هوای داغ، فروسرخ و مایکروویو به ترتیب برابر 3/63، 7/26 و 7/156 دقیقه بود. در این پژوهش، ضریب نفوذ مؤثر رطوبت برای جوانه‌های چرخ‌شده نخود در خشک‌کن‌های هوای داغ، فروسرخ و مایکروویو به ترتیب برابر m2s-1 9-10×99/4، m2s-1 9-10×95/17 و m2s-1 9-10×59/1 به دست آمد. جهت بررسی سینتیک خشک شدن جوانه‌های چرخ‌شده نخود، مدل‎های ریاضی ونگ و سینگ، هندسون و پابیس، تقریب انتشار، پیج، نیوتن، میدیلی و لگاریتمی بر داده‎های تجربی برازش داده شدند. در نهایت، در مدل‌سازی فرآیند خشک‌کردن این محصول، مدل ریاضی میدیلی با چهار پارامتر به دلیل حداقل خطا به‌عنوان بهترین مدل انتخاب شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Application of hot-air, infrared, and microwave methods for drying ground of chickpea sprouts

نویسندگان English

Kimia Goharpour 1
Fakhreddin Salehi 2
Amir Daraei Garmakhany 3
1 MSc Student, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
2 Associate Professor, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
3 Associate Professor, Department of Food Science and Technology, Toyserkan Faculty of Engineering and Natural Resources, Bu-Ali Sina University, Hamedan, Iran
چکیده English

The sprouting process includes changes in nutritional, biochemical, and sensory characteristics that improve chickpea quality and increase its digestibility. Various products such as Falafel are made from ground and dried chickpea sprouts. Therefore, in this research, the use of hot air (70°C), infrared (250 W), and microwave (220 W) methods for drying ground chickpea sprouts was investigated and modeled. The drying time of the samples in the infrared dryer was shorter than the other two dryers. The average drying time of the samples in the hot air, infrared and microwave dryers was 63.3, 26.7, and 156.7 min, respectively. In this research, the effective moisture diffusivity coefficient of ground chickpea sprouts in hot air, infrared and microwave dryers was determined to be 4.99×10-9 m2s-1, 17.95×10-9 m2s-1, and 1.59×10-9 m2s-1, respectively. To study the drying kinetics of ground chickpea sprouts, Wang and Singh, Henderson and Pabis, Approximation of diffusion, Page, Newton, Midilli, and Logarithmic mathematical models were fitted to the experimental data. Finally, when modeling the drying process of this product, Midilli's mathematical model with four parameters was chosen as the best model due to its minimal error.

کلیدواژه‌ها English

Chickpea
Drying
Effective moisture diffusivity coefficient
Infrared
Microwave
Modeling
[1] Ghoshal, G., Kaushal, K. 2020. Extraction, characterization, physicochemical and rheological properties of two different varieties of chickpea starch, Legume Science. 2, e17.
[2] Elobuike, C. S., Idowu, M. A., Adeola, A. A., Bakare, H. A. 2021. Nutritional and functional attributes of mungbean (Vigna radiata [L] Wilczek) flour as affected by sprouting time, Legume Science. 3, e100.
[3] Doddamani, D., Katta, M. A., Khan, A. W., Agarwal, G., Shah, T. M., Varshney, R. K. 2014. CicArMiSatDB: the chickpea microsatellite database, BMC Bioinformatics. 15, 212.
[4] Bidkhori, P., Mohammadpour Karizaki, V. 2022. Diffusion and kinetic modeling of water absorption process during soaking and cooking of chickpea, Legume Science. 4, e116.
[5] Karimi, A. S., Saremnezhad, S. 2020. The effect of germination process on some functional properties of Iranian lentil cultivars, Journal of Food Science and Technology (Iran). 17, 167-176.
[6] Oghbaei, M., Prakash, J. 2016. Effect of primary processing of cereals and legumes on its nutritional quality: A comprehensive review, Cogent Food & Agriculture. 2, 1136015.
[7] El-Adawy, T. A., Rahma, E. H., El-Bedawey, A. A., El-Beltagy, A. E. 2003. Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds, Plant Foods for Human Nutrition. 58, 1-13.
[8] Sofi, S. A., Rafiq, S., Singh, J., Mir, S. A., Sharma, S., Bakshi, P., McClements, D. J., Mousavi Khaneghah, A., Dar, B. N. 2023. Impact of germination on structural, physicochemical, techno-functional, and digestion properties of desi chickpea (Cicer arietinum L.) flour, Food Chemistry. 405, 135011.
[9] Kim, S. M., Aung, T., Kim, M. J. 2022. Optimization of germination conditions to enhance the antioxidant activity in chickpea (Cicer arietimum L.) using response surface methodology, Korean Journal of Food Preservation. 29, 632-644.
[10] Khodadadi, M., Rahmati, M. H., Alizadeh, M. R., Rezaei Asl, A. 2017. Investigating the effect of air temperature and paddy final moisture on the crack percent and conversion coefficient of Iranian rice varieties in fluidized bed dryer, Journal of Food Science and Technology (Iran). 13, 81-91.
[11] Khodadadi, M., Masoumi, A., Sadeghi, M., Moheb, A. 2023. Optimization of drying specification and protein losses of poultry litter during drying process using response surface methodology, Thermal Science and Engineering Progress. 43, 101958.
[12] Mujumdar, A. S.2014. Handbook of industrial drying, CRC press, Taylor & Francis Group, Boca Raton, London,
[13] Salehi, F. 2020. Recent applications and potential of infrared dryer systems for drying various agricultural products: A review, International Journal of Fruit Science. 20, 586-602.
[14] Nachaisin, M., Jamradloedluk, J., Niamnuy, C. 2016. Application of combined far-infrared radiation and air convection for drying of instant germinated brown rice, Journal of Food Process Engineering. 39, 306-318.
[15] Wray, D., Ramaswamy, H. S. 2015. Novel concepts in microwave drying of foods, Drying Technology. 33, 769-783.
[16] Akbarian Meymand, M. J., Faraji Kafshgari, S., Mahmodi, E., Vatankhah, M. 2015. The effect of using microwave pretreatment in drying roots nutmeg on antimicrobial properties against pathogenic bacteria and spoilage molds, Iranian Journal of Medical Microbiology. 9, 47-55.
[17] Bualuang, O., Onwude, D. I., Pracha, K. 2017. Microwave drying of germinated corn and its effect on phytochemical properties, Journal of the Science of Food and Agriculture. 97, 2999-3004.
[18] Ismail, M., Kucukoner, E. 2017. Falafel: A meal with full nutrition, Food and Nutrition Sciences. 8, 1022-1027.
[19] Salehi, F., Inanloodoghouz, M., Ghazvineh, S. 2023. Influence of microwave pretreatment on the total phenolics, antioxidant activity, moisture diffusivity, and rehydration rate of dried sweet cherry, Food Science & Nutrition.
[20] Doymaz, I. 2007. The kinetics of forced convective air-drying of pumpkin slices, Journal of Food Engineering. 79, 243-248.
[21] Salehi, F., Satorabi, M. 2021. Influence of infrared drying on drying kinetics of apple slices coated with basil seed and xanthan gums, International Journal of Fruit Science. 21, 519-527.
[22] Najib, T., Heydari, M. M., Meda, V. 2022. Combination of germination and innovative microwave-assisted infrared drying of lentils: effect of physicochemical properties of different varieties on water uptake, germination, and drying kinetics, Applied Food Research. 2, 100040.
[23] Aghajani, N., Daraei Garmakhany, A., Sari, A. A., Nourozi, M. a. 2023. Hot oven drying of mint leaves: modeling weight loss, phenolic compounds and antioxidant properties variation by using response surface method, mdrsjrns. 19, 127-140.
[24] Taheri, S., Brodie, G., Gupta, D. 2020. Microwave fluidised bed drying of red lentil seeds: Drying kinetics and reduction of botrytis grey mold pathogen, Food and Bioproducts Processing. 119, 390-401.
[25] Ghaderi, A., Abbasi, S., Motevali, A., Minaei, S. 2011. Selection of a mathematical model for drying kinetics of sour cherry (Prunus cerasus L.) in a microwave-vacuum dryer, Iranian Journal of Nutrition Sciences and Food Technology. 6, 55-64.