بهینه‌سازی پیش فرآیند ترکیبی (اسمز-فراصوت) و خشک کردن تکمیلی با هوای داغ میوه پوملو

نویسندگان
1 باشگاه پژوهشگران جوان و نخبگان، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران
2 مدرس، دانشگاه جامع علمی- کاربردی، مرکز چشمه نوشان خراسان (عالیس)
3 1- گروه علوم و صنایع غذایی، واحد سبزوار، دانشگاه آزاد اسلامی، سبزوار، ایران 2- مدرس، دانشگاه جامع علمی کاربردی، خراسان رضوی، ایران
چکیده
در این مطالعه، اثر استفاده از آبگیری اسمزی، فراصوت و پوشش خوراکی به عنوان پیش تیمار قبل از فرآیند خشک کردن جهت بهبود طعم محصول، کاهش صدمات حرارتی، کاهش آب بافتی و سهولت انتقال جرم مورد بررسی قرار گرفت. روش سطح پاسخ برای بهینه‌سازی شرایط خشک کردن برش‌های میوه پوملو توسط اسمز-هوای داغ مورد استفاده قرار گرفت. غلظت پوشش خوراکی (2-0 % وزنی/حجمی)، زمان اعمال فراصوت (30-0 دقیقه) و غلظت ساکارز (80-40 % وزنی/وزنی) به عنوان متغیرهای مستقل بر میزان رطوبت، جذب مواد جامد، افت وزن و ضریب بهره‌وری میوه پوملو به عنوان متغیرهای وابسته مورد ارزیابی قرار گرفت. تمام متغیرهای فرایند به صورت خطی برای تمام پاسخ‌ها معنی­دار بودند (01/0>P). مقایسه نتایج بهینه‌سازی فرایند آبگیری اسمزی پوملو پوشش یافته و بدون پوشش نشان داد که در نقطه بهینه، بیشترین مقدار پوشش کربوکسی­متیل­سلولز و زمان آبگیری اسمزی و غلظت محلول اسمزی در نمونه پوشش یافته به ترتیب 2 درصد، 86/21 دقیقه و 75/57 درصد محاسبه شد. بیشترین مقادیر کاهش آب، افت وزن و ضریب بهره‌وری به ترتیب 09172/0 (گرم/در 100گرم ماده جامد)، 091/0 درصد و 478/19 در نمونه پوشش یافته و بیشترین جذب مواد جامد با مقدار 0089/0 (گرم/در 100گرم ماده جامد) در نمونه بدون پوشش گزارش شد. نتایج نشان داد استفاده از پوشش باعث کاهش جذب مواد جامد می­گردد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of combined pre-process (osmosis-ultrasound) and additional drying with hot air of Pommelo fruit

نویسندگان English

Maryam Sabetghadam 1
Fatemeh Pourhaji 2
Mahdi Jalali 3
Elham Azadfar 1
1 Young Researchers and Elite Club, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
2 Lecturer, University of Applied Science and Technology, Center of Cheshme Noshan Khorasan (Alis)
3 1- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran 2- Lecturer, University of Applied Science and Technology, Khorasan Razavi, Iran
چکیده English

Effect of osmosis dehydration, ultrasonic and edible coating as the pretreatment before drying has been studied in order to improve the flavor of the product, reduce thermal damages, decrease interstitial water and ease of transferring mass. The response surface method was used to optimize the drying conditions of Pommelo slices by osmosis-hot air. The concentration of edible coating (0-2% w/v) and the time of applying ultrasound (0-30 min) and the concentration of sucrose (40-80% w/w) were evaluated as independent variables on the amount of moisture content, absorption of solids, weight loss and productivity coefficient of Pommelo slices as dependent variables. All process variables were linearly significant for all responses (P<0.01). The comparison of the optimization results of coated and uncoated Pommelo osmotic dehydration showed that at the optimal point, the maximum amount of carboxymethyl cellulose coating and the osmotic dehydration time and the concentration of the osmotic solution in the coated sample were calculated as 2%, 21.86 minutes and 57.75%, respectively. The highest values of water reduction, weight loss and efficiency coefficient were 0.09172 (g/100g of solid matter), 0.091% and 19.478 respectively in the coated sample, and the highest absorption of solids with a value of 0.0089 (g/100g of solids) was reported in the uncoated sample. The results showed that the use of coating reduces the absorption of solid.

کلیدواژه‌ها English

Pommelo
Osmosis
Ultrasound
Drying
Hot air
[1] Mozaffarian, V. 2009. A dictionary of Iranin plant, Names; Latin, English, Persian. Farhang Moaser Publishers, ISBN: 9789645545404. [In Persian].
[2] Sun, L., Zhang, H., and Zhuang, Y. 2012. Preparation of free, soluble conjugate, and insoluble-bound phenolic compounds from peels of rambutan (Nephelium lappaceum) and evaluation of antioxidant activities in vitro. Journal of Food Science, 77(2): 198-204.
[3] AOAC. 2005. Official methods of analysis, 18th edn. Association of Official Analytical Chemists, Washington, DC.
[4] Bolin, H.R., Huxsoll, C.C., Jackson, R., and Ng, K.C. 1983. Effect of osmotic agents and concentration on fruit quality. Journal of Food Science, 48(1): 202-205.
[5] Maskooki, A., Mortazavi, A., and Maskooki, A. 2007. Effects of combined caustic soda and ultrasound on reducing the drying time of grapes in raisin production. Iranian Journal of Nutrition Sciences & Food Technology, 2(1): 1-10. [In Persian].
[6] Moini, S., and Javaheri, M. 2004. An investigation on usage of osmotic method for drying kilka. Iranian Journal of Agriculture Science, 35(4): 901-909. [In Persian].
[7] Hahn, F., and Sanchez, S. 2000. Carrot volume evaluation using imaging algorithms. Journal of Agricultural Engineering Research, 75(3): 243-249.
[8] Reshadat, R., Khoshtaghaza, M.H., and Hamidy, Z. 2023. Optimization of Orange fruit drying in hot air dryer with combined pretreatment of osmotic dehydration and ultrasonic waves. Journal of Researches in Mechanics of Agricultural Machinery, 12(2): 115-126. [In Persian].
[9] Daraei garmakhany, A., and Moradi, M. 2018. Response Surface Optimization of Combination Drying (Osmotic-Hot Air Drying) of Apple Fruit Slices. Iranian Journal of Nutrition Sciences & Food Technology, 13(3): 103-114. [In Persian].
[10] Seraji, A., Ghanbarzadeh, B., Sowti Khiabani, M., and Movahhed, S. 2012. The study of carboxymethyl cellulose-ascorbic acid based edible coating and osmotic dehydration on cucurbit drying. Iranian Food Science and Technology Research Journal, 8(2): 209-218. [In Persian].
[11] Yadav, A.K., and Singh, S.V. 2014. Osmotic dehydration of fruits and vegetables: a review. Journal of Food Science and Technology, 51(9): 1654-1673.
[12] Seiiedlou, S., Ghasemzadeh, H.R., Hamdami, N., Talati, F., and Moghaddam, M. 2010. Convective drying of apple: mathematical modeling and determination of some quality parameters. International Journal of Agriculture and Biology, 12: 171-178.
[13] Eshraghi, E., Kashani-Nejad, M., Maghsoudlou, Y., Beiraghi-Toosi, S., and Alami, M. 2014. Studying the effect of osmosis-ultrasound compound pre-treatment on drying kiwi fruit sheets. Iranian Food Science and Technology Research Journal, 9(4): 323-329. [In Persian].
[14] Fernandes, F.A.N., Gallão, M.I., and Rodrigues, S. 2008. Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT - Food Science and Technology, 41(4): 604-610.
[15] Taiwo, K.A., Eshtiaghi, M.N., Ade-Omowaye, B.I.O., and Knorr, D. 2003. Osmotic dehydration of strawberry halves: influence of osmotic agents and pretreatment methods on mass transfer and product characteristics. Interrnational Journal of Food Science & Technology, 38(6): 693-707.
[16] Kowalska, H., Marzec, A., Domian, E., Kowalska, J., Ciurzyńska, A., and Galus, S. 2021. Edible coatings as osmotic dehydration pretreatment in nutrient-enhanced fruit or vegetable snacks development: A review. Comprehensive Reviews in Food Science and Food Safety, 20(6): 5641-5674.
[17] Jalaee, F., Fazeli, A., Fatemian, H., and Tavakolipour, H. 2011. Mass transfer coefficient and the characteristics of coated apples in osmotic dehydrating. Food and Bioproducts Processing, 89(4): 367-374.
[18] Dehghannya, J., Emam-Djomeh, Z., Sotudeh-Gharebagh, R., and Ngadi, M. 2006. Osmotic dehydration of apple slices with carboxy-methyl cellulose coating. Drying Technology, 24(1): 45-50.
[19] García, M., Díaz, R., Martínez, Y., and Casariego, A. 2010. Effects of chitosan coating on mass transfer during osmotic dehydration of papaya. Food Research International, 43(6): 1656-1660.
[20] Shukla, B.D., and Singh, S.P. 2007. Osmo-convective drying of cauliflower, mushroom and greenpea. Journal of Food Engineering, 80(2): 741-747.
[21] Raoult-Wack, A.L. 1994. Recent advances in the osmotic dehydration of foods. Trends in Food Science & Technology, 5(8): 255-260.
[22] Wongphan, P., Panrong, T., and Harnkarnsujarit, N. 2022. Effect of different modified starches on physical, morphological, thermomechanical, barrier and biodegradation properties of cassava starch and polybutylene adipate terephthalate blend film. Food Packaging and Shelf Life, 32: 100844.
[23] Rodrigues, S., Gomes, M.C.F., Gallão, M.I., and Fernandes, F.A.N. 2008. Effect of ultrasound-assisted osmotic dehydration on cell structure of sapotas. Journal of the Science of Food and Agriculture, 89(4): 665-670.
[24] Sabahi, S. 2013. Study the effect of ultrasound & microwave methods on osmotic dehydration of celery. Thesis on Food Science and Technology "M.Sc.". Faculty of Agricultural Engineering - Food Science and Technology. Islamic Azad University Sabzevar Branch. [In Persian].
[25] Rastogi, N.K., and Raghavarao, K.S.M.S. 2004. Mass transfer during osmotic dehydration of pineapple: considering Fickian diffusion in cubical configuration. LWT - Food Science and Technology, 37(1): 43-47.
[26] Azizi Khasal, M., bassiri, A., and Maghsoudlou, Y., 2013. Optimization of combined process of osmotic dehydration in discontinuous reduced pressure-hot air drying of orange slices using response surface method. Food Technology & Nutrition, 10(3): 63-72. [In Persian].
[27] Seraji, A., Ghanbarzadeh, B., Sowti Khiabani, M., and Movahhed, S. 2012. The study of carboxymethyl cellulose-ascorbic acid based edible coating and osmotic dehydration on cucurbit drying. Iranian Food Science and Technology Research Journal, 8(2): 209-218. [In Persian].
[28] Emam-Djomeh, Z., and Aladdini, B. 2005. Improving the quality indicators of dried kiwi and its formulation using pre-process osmosis. Iranian Journal of Agriculture Science, 36(6): 1421-1427. [In Persian].