تاثیر روش‌های دی اکسید کربن فوق بحرانی و مایکروویو بر استخراج ترکیبات زیست‌فعال از دانه خارمریم

نویسندگان
1 گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران
2 گروه مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه صنعتی اصفهان، ایران
چکیده
در پژوهش حاضر، تاثیر روش‌های نوین استخراج دی اکسید کربن فوق بحرانی (SC-CO2) و حلال به کمک مایکروویو (MAE) و هم چنین روش سنتی سوکسله (CSE) بر استخراج ترکیبات زیست‌فعال از دانه گیاه دارویی خار مریم مورد مطالعه قرار گرفت. بالاترین مقدار عملکرد کمی (15/0±40/22 درصد) با استفاده از روش CSE به دست آمد. در حالی‌که، کارایی روش های SC-CO2 و MAE به ترتیب در حدود 89 و 50 درصد روش سوکسله بود. بالاترین میزان توانایی مهار رادیکال‌های آزاد ·DPPH و ·HO توسط ترکیبات زیست‌فعال حاصل از روش SC-CO2 مشاهده گردید. نتایج حاصل از اندازه‌گیری محتوای فنول کل نشان داد که بیشترین (14/0±93/102 میلی‌گرم معادل گالیک اسید بر گرم) و کمترین (18/0±50/14 میلی‌گرم معادل گالیک اسید بر گرم) مقدار به ترتیب مربوط به ترکیبات حاصل از روش‌های SC-CO2 و CSE می‌باشد. پروفایل اسید چرب با استفاده از دستگاه گاز کروماتوگرافی-آشکارساز جرمی شناسایی گردید. اسیدهای چرب لینولئیک اسید و اولئیک اسید به‌عنوان اسیدهای چرب غالب شناسایی شدند. به‌صورت کلی می‌توان اذعان نمود که دانه گیاه خارمریم منبع غنی از ترکیبات زیست فعال می‌باشد که استفاده از تکنیک‌های نوین SC-CO2 و MAE می‌توانند جایگزین‌های امیدوار کننده‌ی روش سنتی جهت استحصال ترکیبات ارزشمند آن باشند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of Supercritical CO2 and Microwave-assisted Extraction Methods on Bioactive Compounds Extraction from Silybum marianum Seed

نویسندگان English

Mohadese Yousefi 1
Mandana Bimakr 1
Seyyed Mohammad Ghoreishi 2
Ali Ganjloo 1
1 Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
2 Department of Chemical Engineering, Faculty of Engineering, Isfahan University of Technology, Iran
چکیده English

In the current study, the effect of different new extraction methods including supercritical carbon dioxide extraction (SC-CO2), microwave-assisted extraction (MAE) and also conventional Soxhlet extraction (CSE) were investigated on bioactive compounds recovery from Silybum marianum seed. The crude extraction yield (22.40± 0.15%) was obtained using CSE, while the efficiency of SC-CO2 and MAE were about 89 and 50% of those obtained using CSE. The highest free radical scavenging activity in terms of DPPH and HO radicals was obtained in extract obtained using SC-CO2. From the TPC analysis, the highest and lowest value was determined in extracts obtained using SC-CO2 (102.93± 0.14 mg GAE/g) and CSE (14.50± 0.18 mg GAE/g), respectively. Fatty acid composition was analyzed using Gas Chromatography–Mass Spectrometry. Linoleic and oleic acids were determined as the main fatty acids. Finally, it can be concluded that S. marianum seed is a potential source of bioactive compounds and new extraction techniques of SC-CO2 and MAE could be suggested as promising methods to substitute conventional method for successful recovery of bioactive compounds.

کلیدواژه‌ها English

Silybum marianum
Bioactive compounds
Supercritical carbon dioxide extraction
Microwave-assisted extraction
[1] Azmir, J., et al. 2013. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering. 699: 426-436.
[2] Qavami, N., et al. 2013. A review on pharmacological, cultivation and biotechnology aspects of Milk Thistle (Silybum marianum (L.) Gaertn.). Journal of Medicinal Plants. 12: 19- 37.
[3] Bimakr, M., et al. 2012. Optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves by using response surface methodology. Food and Bioprocess Technology. 5: 912-920.
[4] Bimakr, M., et al. 2019. Modified supercritical carbon dioxide extraction of biologically active compounds from Feijoa sellowiana leaves. International Journal of Food Engineering. 20180342.
[5] Bimakr, M., et al. 2013. Supercritical carbon dioxide extraction of seed oil from winter melon (Benincasa hispida) and its antioxidant activity and fatty acid composition. Molecules. 18: 997-1014.
[6] Bashipour, F. and Ghoreishi, S.M. 2012. Experimental optimization of supercritical extraction of β-carotene from Aloe barbadensis Miller via genetic algorithm. The Journal of Supercritical Fluids. 72: 312-319.
[7] Bimakr, M., et al. 2011. Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food and Bioproducts Processing. 89: 67-72.
[8] Liza, M.S, et al. (2010). Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca). Food and Bioproducts Processing. 88: 319-326.
[9] Gerard, D. and May, P. 2002. Herb and spice carbon dioxide extracts-versatile, safe ingredients for premium food and health food. Food Technology. 2: 1-5.
[10] Ghoreishi, S., Hedayati, A. and Kordnejad, M. 2016. Micronization of chitosan via rapid expansion of supercritical solution. Journal of Supercritical Fluids. 111:162-70.
[11] Argun, M.E. et al. 2022. Recovery of valuable compounds from orange processing wastes using supercritical carbon dioxide extraction. Journal of Cleaner Production. 375: 134169.
[12] Sarfarazi, M., et al., (2020). Evaluation of microwave-assisted extraction technology for separation of bioactive components of saffron (Crocus sativus L.). Industrial Crops and Products. 145: 111978.
[13] Mellinas, A., Jiménez, A. and Garrigós, M. 2020. Optimization of microwave-assisted extraction of cocoa bean shell waste and evaluation of its antioxidant, physicochemical and functional properties. LWT. 127: 109361.
[14] Araújo, R.G., et al. (2020). Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Industrial Crops and Products. 154: 112623.
[15] Pengdee, C., Sritularak, B. and Putalun, W. 2020. Optimization of microwave-assisted extraction of phenolic compounds in Dendrobium formosum Roxb. ex Lindl. and glucose uptake activity. South African Journal of Botany. 132: 423-431.
[16] Chan, C.H., et al. 2011. Microwave-assisted extractions of active ingredients from plants. Journal of Chromatography A. 16:6213-6225.
[17] Magdalena, M., Lukasiewicz, M. and Jakubowski, P. 2015. Microwave-assisted extraction of bioactive compounds from seeds of milk thistle, black cumin and coriander. b005. 10.3390/ecsoc-19-b005.
[18] Poodi, Y., et al. 2018. Intensification of bioactive compounds extraction from Feijoa (Feijoa sellowiana) leaves using ultrasonic waves. Food Bioproducts Processing. 108: 37-50.
[19] Ma, J.S., et al. 2020. Extraction, characterization and antioxidant activity of polysaccharide from Pouteria campechiana seed. Carbohydrate Polymers. 229: 115409.
[20] Ismail, A., Marjan, Z.M. and Foong, C.W. 2004. Total antioxidant activity and phenolic content in selected vegetables. Food chemistry. 87: 581-586.
[21] Bimakr, M., et al. 2016. Characterization of valuable compounds from winter melon (Benincasa hispida (Thunb.) Cogn.) seeds using supercritical carbon dioxide extraction combined with pressure swing technique. Food and Bioprocess Technology. 9: 396-406.
[22] Hasanloo, T., et al. (2008). Determination of tocopherols and fatty acids in seeds of Silybum marianum (L.) Gaerth. Journal of Medicinal Plants. 7: 69-76.
[23] Frum, A. 2017. HPLC determination of polyphenols from L. Flowers. Acta Universitatis Cibiniensis. Series E: Food Technology. 2:197-101.
[24] Spinei, M. and Oroian, M. 2023. Structural, functional and physicochemical properties of pectin from grape pomace as affected by different extraction technique. International Journal of Biological Macromolecule. 224: 739-753.
[25] Kant, R. and Kumar, A. 2022. Review on essential oil extraction from aromatic and medicinal plants: Techniques, performance and economic analysis. Sustainable Chemistry and Pharmacy. 30: 2352-5541.
[26] Huschek, G., et al. 2022. Characterization and optimization of microwave-assisted extraction of B-phycoerythrin from Porphyridium purpureum using response surface methodology and Doehlert design. Bioresource Technology Reports. 19: 101212.
[27] Boyapati, T., Rana, S.S. and Ghosh, P. 2022. Microwave-assisted extraction of dragon fruit seed oil: Fatty acid profile and functional properties. Journal of the Saudi Society of Agricultural Sciences. ISSN 1658-077X, In press.
[28] Roshani Neshat, R., Bimakr, M. and Ganjloo, A. 2022. Effects of Zedo gum edible coating enriched with microwave-agitated bed extracted bioactive compounds from lemon verbena leaves on oxidative stability of Oncorhynchus mykiss. Food Measurements and Characterization. 16: 4388-4401.
[29] Rezazadeh, B., et al. 2008. Comparison of super critical fluid extraction and hydrodistillation methods on Lavander΄s essential oil composition and yield. Journal of Medicinal Plants. 7: 63-68.
[30] Mousavi, M., et al. 2018. Supercritical carbon dioxide extraction of bioactive compounds from feijoa (Feijoa sellowiana) leaves. Nutrition and Food Sciences Research. 5: 15-23.
[31] Garcia-Salas, P., et al. 2010. Phenolic compound extraction systems for fruit and vegetable samples. Molecules. 15: 8813-8826.
[32] Mhamdi, B., et al. 2016. Fatty acids, essential oil and phenolics composition of Silybum marianum seeds and their antioxidant activities. Pakistan Journal of Pharmaceutical Sciences. 29: 951-959.
[33] Radojković, M., et al. 2017. Microwave-assisted extraction of phenolic compounds from Morus nigra leaves: optimization and characterization of the antioxidant activity and phenolic composition. Journal of Chemical Technology and Biotechnology. 93: 85-93.
[34] Lobo, V., et al. 2010. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews. 4: 118-126.
[35] Noroozi, F., et al. 2021. A short time bioactive compounds extraction from Cucurbita pepo seed using continuous ultrasound‐assisted extraction. Journal of Food Measurement and Characterization. 15: 2135-2145.
[36] Li, A., et al. 2011. Antioxidant and immunoregulatory activity of different polysaccharide fractions from tuber of Ophiopogon japonicus. Carbohydrate Polymers. 86: 1273-1280.
[37] Sinemobong, O. Essien, B.Y. and Baroutian, S. 2020. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends in Food Science and Technology. 97: 156-169.
[38] Mousavi, M.S., et al. 2019. Modified supercritical carbon dioxide extraction of biologically active compounds from Feijoa Sellowiana leaves. International Journal of Food Engineering. 15: 20180342.
[39] Mojaradi, F., Bimakr, M. and Ganjloo, A. 2021. Feasibility of hydroethanolic solvent system for bioactive compounds recovery from aerial parts of Silybum marianum and kinetics modeling. Journal of Human Environment and Health Promotion. 7: 129-137.
[40] Kaur, S., and Ubeyitogullari, A. 2023. Extraction of phenolic compounds from rice husk via ethanol-water-modified supercritical carbon dioxide, Heliyon, 9: e14196.
[41] Cheng, M., et al. 2023. Comparison of microwave, ultrasound and ultrasound-microwave assisted solvent extraction methods on phenolic profile and antioxidant activity of extracts from jackfruit (Artocarpus heterophyllus Lam.) pulp, LWT, 173: 114395.
[42] Mao, R., et al. 2022. An efficient and sensitive method on the identification of unsaturated fatty acids in biosamples: Total lipid extract from bovine liver as a case study. Journal of Chromatography A. 1675: 463176.
[43] de Souza, R.J., et al. 2015. Intake of saturated and trans unsaturated fatty acids and risk of all-cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ Clinical Research. 351: 3978.
[44] Samaram, S., et al. 2013. Ultrasound-assisted extraction (UAE) and solvent extraction of papaya seed oil: yield, fatty acid composition and triacylglycerol profile. Molecules. 18: 12474-12487.
[45] Sicaire, A.G., et al. 2016. Ultrasound induced green solvent extraction of oil from oleaginous seeds. Ultrasonics Sonochemistry. 31: 319-329.