تاثیر پیش‌تیمار فراصوت بر ویژگی‌های آنتی‌اکسیدانی پروتئین هیدرولیزشده کنجاله بذر کتان با استفاده از آنزیم‌های آلکالاز و پانکراتین به روش سطح پاسخ

نویسندگان
1 دانشجوی کارشناسی ارشد شیمی مواد غذایی، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 استاد گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
3 استادیار گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی واحد آزادشهر
4 دانش‌آموخته دکتری شیمی مواد غذایی، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده
در سال‌های اخیر، محققان پپتیدهای فعال زیستی با خواص آنتی‌اکسیدانی قابل قبول را از منابع گوناگونی استخراج کرده‌اند. کنجاله بذر کتان که محصول فرعی اصلی فرآیند استخراج روغن بذر کتان است؛ حاوی مقدار زیادی پروتئین می‌باشد که با هیدرولیز آنزیمی می‌توان به پپتیدهایی با خواص آنتی‌اکسیدانی دست یافت. در این پژوهش تاثیر شرایط هیدرولیز (غلظت آنزیم 1-7/2 درصد و زمان 64/183-30 دقیقه)، نوع پروتئاز (پانکراتین و آلکالاز) و پیش‌تیمار فراصوت بر درجه هیدرولیز و ویژگی­های آنتی‌اکسیدانی (مهار رادیکال آزاد DPPH، فعالیت آنتی‌اکسیدانی کل و شلاته‌کنندگی یون آهن) پروتئین هیدرولیز شده کنجاله بذر کتان با استفاده از روش سطح پاسخ ارزیابی شد. شرایط بهینه برای تولید پروتئین هیدرولیز شده با بیشترین ویژگی­های آنتی اکسیدانی با آنزیم‌ آلکالاز با پیش‌تیمار و بدون پیش‌تیمار و همچنین آنزیم پانکراتین با پیش‌تیمار و بدون آن به­ترتیب عبارت بودند از: زمان هیدرولیز 79، 4/146، 77/111 و 21/97 دقیقه و غلظت آنزیم29/2، 46/1، 26/2 و 38/1درصد؛ با بررسی درجه هیدرولیز و ویژگی‌های آنتی‌اکسیدانی پروتئین­های هیدرولیز شده کنجاله بذر کتان، پروتئین هیدرولیزشده با آنزیم پانکراتین با اعمال پیش‌تیمار فراصوت به عنوان تیمار بهینه پیشنهاد شد. پروتئین هیدرولیزشده با آنزیم پانکراتین با پیش‌تیمار فراصوت دارای 66/75 % مهار رادیکال آزاد DPPH، 39/70 % فعالیت شلاته کنندگی یون آهن، فعالیت آنتی‌اکسیدانی کل با جذب 86/0 نانومتر و درجه هیدرولیز 69/80% گزارش شد. بنابراین می‌توان بیان کرد که پروتئین هیدرولیزشده کنجاله بذر کتان با قابلیت آنتی‌اکسیدانی قوی، یک ترکیب زیست فعال برای استفاده در فرمولاسیون‌های غذایی و تولید محصولات فراسودمند می‌باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of ultrasound pretreatment on the antioxidant properties of hydrolyzed protein from flaxseed meal using alcalase and pancreatin enzymes by response surface methodology

نویسندگان English

Faezeh Farzanfar 1
Alireza Sadeghi Mahoonak 2
Mohammad Ghorbani 2
Seyed Hossein Hosseini Qaboos 3
shima kaveh 4
1 M.SC student in food chemistry, Department of Food Science and Industry, Faculty of Food Industry, Gorgan University of Agricultural Sciences and Natural Resources
2 Department of Food Science and Industry, Faculty of Food Industry, Gorgan University of Agricultural Sciences and Natural Resources
3 Assistant Professor, Department of Food Science and Industry, Islamic Azad University, Azadshahr branch
4 Ph.D. of Food Chemistry, Department of Food Science and Industry, Faculty of Food Industry, Gorgan University of Agricultural Sciences and Natural Resources
چکیده English

In recent years, researchers have identified and extracted bioactive peptides with acceptable antioxidant properties from different protein sources. Flaxseed meal, which is the main by-product of the linseed oil extraction process, contains a large amount of protein, which can be obtained by enzymatic hydrolysis to peptides with antioxidant properties. In this research, the effect of hydrolysis conditions (enzyme concentration 2.7-1% and time 30-183.64 minutes), type of protease (pancreatin and alcalase) and ultrasound pretreatment on the degree of hydrolysis and antioxidant properties (DPPH free radical inhibition, Total antioxidant activity, and iron ion chelation) of hydrolyzed protein obtained from flaxseed meal were evaluated using the response surface method. The optimal conditions for the production of hydrolyzed protein with the most antioxidant properties with alcalase enzyme with and without pretreatment and pancreatin enzyme with and without pretreatment, respectively, were hydrolysis time 79, 146.79, 111.77 and 97.21 minutes and enzyme concentration 2.29%, 1.46%, 2.26% and 1.38%; According to the obtained results, by examining the degree of hydrolysis and antioxidant properties of the hydrolyzed proteins of flaxseed meal, hydrolyzed protein with pancreatin enzyme was suggested as the optimal treatment. Hydrolyzed protein with pancreatin enzyme with ultrasound pretreatment was reported to have 75.66% DPPH free radical inhibition, 70.39% iron ion chelating activity, total antioxidant activity with absorbance of 0.86 nm and 80.69% hydrolysis degree. Therefore, it can be stated that the hydrolyzed protein of flax seed meal with strong antioxidant capacity is a bioactive compound for use in food formulations and the production of beneficial products.

کلیدواژه‌ها English

Antioxidant
Bioactive Peptide
Ultrasound
Flaxseed
enzymatic hydrolysis
Response surface
1- Kaveh, S., Sadeghi Mahoonak, A. and Sarabandi, K. (2020). The Effect of Solvent Type, Time and Extraction Method on the Chemical Compositions and Antioxidant Activity of Eggplant Peel Extract. Karafan Quarterly Scientific Journal, 17(2), pp.135-150.
2- Hashemi, S. M. B., Abedi, E., Kaveh, S., & Mousavifard, M. (2022). Hypocholesterolemic, antidiabetic and bioactive properties of ultrasound-stimulated exopolysaccharide produced by Lactiplantibacillus plantarum strains. Bioactive Carbohydrates and Dietary Fibre, 28, 100334.
3- Kaveh, S., Hashemi, S. M. B., Abedi, E., Amiri, M. J., & Conte, F. L. (2023). Bio-preservation of meat and fermented meat products by lactic acid bacteria strains and their antibacterial metabolites. Sustainability, 15(13), 10154.
4- Pihlanto, A. (2006). Antioxidative peptides derived from milk proteins. International dairy journal, 16(11), 1306-1314.‌
5- Kaveh, S., Sadeghi, M.A., Ghorbani, M., Jafari, M., Sarabandi, K.) 2019). Optimization of production of antioxidant peptides using enzymatic hydrolysis of fenugreek seed. Journal of Food Science and Technology, 15 (84), pp. 75-88.
6- Dziuba, B., & Dziuba, M. (2014). Milk proteins-derived bioactive peptides in dairy products: molecular, biological and methodological aspects. Acta Scientiarum Polonorum Technologia Alimentaria, 13(1), 5-26.‌
7- Udenigwe, C. C., & Aluko, R. E. (2012). Food protein‐derived bioactive peptides: production, processing, and potential health benefits. Journal of food science, 77(1), R11-R24.‌
8- Silva, S., Almeida, A. J., & Vale, N. (2019). Combination of cell-penetrating peptides with nanoparticles for therapeutic application: a review. Biomolecules, 9(1), 22.‌
9- Sánchez, A., & Vázquez, A. (2017). Bioactive peptides: A review. Food Quality and Safety, 1(1), 29-46.‌
10- Hoshiar, L., Manafi Dizj Yakan, M., Jafarizadeh Malmiri, H., Hesari, J., Azadmard Demirchi, S., & Sadif. (2021). Investigating some physicochemical, sensory and antioxidant properties of mixed formulated fruit juices. Innovation in Food Science and Technology, 13(4), 95-83.
11- Marambe, H. K., & Wanasundara, J. P. D. (2017). Protein from flaxseed (Linum usitatissimum L.). In Sustainable protein sources (pp. 133-144). Academic Press.‌
12- Adjonu, R., Doran, G., Torley, P., & Agboola, S. (2013). Screening of whey protein isolate hydrolysates for their dual functionality: Influence of heat pre-treatment and enzyme specificity. Food chemistry, 136(3-4), 1435-1443.‌
13- Hernández-Ledesma, B., del Mar Contreras, M., & Recio, I. (2011). Antihypertensive peptides: Production, bioavailability and incorporation into foods. Advances in colloid and interface science, 165(1), 23-35.‌
14- Kaveh, S., Gholamhosseinpour, A., Hashemi, S. M. B., Jafarpour, D., Castagnini, J. M., Phimolsiripol, Y., & Barba, F. J. (2023). Recent advances in ultrasound application in fermented and non‐fermented dairy products: Antibacterial and bioactive properties. International Journal of Food Science & Technology.
15- Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., ... & Zhang, Q. (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature genetics, 40(6), 761-767.‌
16- Chandrapala, J., Zisu, B., Palmer, M., Kentish, S., & Ashokkumar, M. (2011). Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrasonics sonochemistry, 18(5), 951-957.‌
17- Jambrak, A. R., Mason, T. J., Lelas, V., Paniwnyk, L., & Herceg, Z. (2014). Effect of ultrasound treatment on particle size and molecular weight of whey proteins. Journal of Food engineering, 121, 15-23.‌
18- O'sullivan, J., Murray, B., Flynn, C., & Norton, I. (2016). The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins. Food hydrocolloids, 53, 141-154.‌
19- Hasan, M. O., Hasan, T. K., & Naji, S. A. H. (2020, August). Effect of adding pumpkin and flax oil to diets on the meats physical and chemical traits of broilers. In IOP Conference Series: Earth and Environmental Science (Vol. 553, No. 1, p. 012009). IOP Publishing.‌
20- Feyzi, S., Varidi, M., Zare, F. and Varidi, M.J., 2018. Effect of drying methods on the structure, thermo and functional properties of fenugreek (Trigonella foenum graecum) protein isolate. Journal of the Science of Food and Agriculture, 98(5), pp.1880-1888.
21- Li, B., Chen, F., Wang, X., Ji, B., and Wu, Y. 2007. Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization–mass spectrometry. Food Chemistry, 102, 1135–1143.
22- Adjonu, R., Doran, G., Torley, P. and Agboola, S., 2014. Whey protein peptides as components of nanoemulsions: A review of emulsifying and biological functionalities. Journal of Food Engineering, 122, pp.15-27.
23- Kruger, N.J., 2009. The Bradford method for protein quantitation. The protein protocols handbook, pp.17-24.
24- Wu, H.C., Chen, H.M. and Shiau, C.Y., 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36(9-10), pp.949-957.
25- Jamdar, S.N., Rajalakshmi, V., Pednekar, M.D., Juan, F., Yardi, V. and Sharma, A. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry, 121: 178–184.
26- Kaveh, S., Sadeghi Mahoonak, A., Ghorbani, M., Jafari, M. and Sarabandi, K. (2019). Optimization of factors affecting the antioxidant activity of fenugreek seed's protein hydrolysate by response surface methodology. Iranian Journal of Nutrition Sciences & Food Technology, 14(1).
27- Kaveh, S., Sadeghi Mahoonak, A., Erfani Moghadam, V., Ghorbani, M., Gholamhosseinpour, A., Raeisi, M. (2023). Evaluation the antioxidant properties of purified bioactive peptides from the wastes of skipjack fish (Katsuwonus pelamis) processing, by pepsin and trypsin digestive enzymes. Journal of Food Science and Technology, 20 (141):200-222
28- Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R. and Shahiri, H., 2009. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115(1), pp.238-242.
29- You, L., Zhao, M., Cui, C., Zhao, H. and Yang, B., 2009. Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative Food Science & Emerging Technologies, 10(2), pp.235-240.
30- Xue, F., Wu, Z., Tong, J., Zheng, J., & Li, C. (2017). Effect of combination of high-intensity ultrasound treatment and dextran glycosylation on structural and interfacial properties of buckwheat protein isolates. Bioscience, Biotechnology, and Biochemistry, 81(10), 1891-1898.‌
31- Richardson, T., and Hyslop, D.B. 1985. Enzymes. Ch. 6 in Food Chemistry, O.R. Fennema (Ed.), p. 371-476. Marcel Dekker, Inc., New York.
32- Guérard, F., Guimas, L. and Binet, A.J.J.O.M.C.B.E., 2002. Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of molecular catalysis B: Enzymatic, 19, pp.489-498.
33- Sherafat, N., Motamedzadegan, A. and Safari, R., 2013. The effect of hydrolyzing time on cooked tuna fish (Skipjack tuna) wastes by alcalase on protein recovery and the hydrolysate molecular weight. Journal of Innovation in Food Science and Technology, 5(3).
34- Wang, Y., Wang, Z., Handa, C.L. and Xu, J., 2017. Effects of ultrasound pre-treatment on the structure of β-conglycinin and glycinin and the antioxidant activity of their hydrolysates. Food Chemistry, 218, pp.165-172.
35- Alvand, M., Sadeghi Mahoonak, A., Ghorbani, M., Shahiri Tabarestani, H. and Kaveh, S., 2022. Comparison of the Antioxidant Properties of Hydrolyzed Turkmen Melon Seed Protein by Pancreatin and Alcalase. Food Engineering Research, 21(2), pp.75-90.
36- Batista, I., Ramos, C., Coutinho, J., Bandarra, N., and Nunes, M. 2010. Characterization of protein hydrolysates and lipids obtained from black scabbard fish by-products and antioxidative activity of the hydrolysates produced. Process Biochemistry, 45: 18-24.
37- Umayaparvathi, S., Meenakshi, S., Vimalraj, V., Arumugam, M., Sivagami, G. and Balasubramanian, T., 2014. Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomedicine & Preventive Nutrition, 4(3), pp.343-353.
38- Meshginfar, N., Sadeghi Mahonak, A., Ghorbani, M., Ziaiefar, A., Kashaninejad, K. 2014. Optimizing the production of hydrolyzed protein from by-products of the meat industry using the response surface method. Food Industry Research, 24(2), 225-215.
39- Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., ... & Zhang, Q. (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature genetics, 40(6), 761-767.‌
40- Jiang, L., Wang, J., Li, Y., Wang, Z., Liang, J., Wang, R., Chen, Y., Ma, W., Qi, B. and Zhang, M., 2014. Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Research International, 62, pp.595-601.
41- Wang, Y., Wang, Z., Handa, C.L. and Xu, J., 2017. Effects of ultrasound pre-treatment on the structure of β-conglycinin and glycinin and the antioxidant activity of their hydrolysates. Food Chemistry, 218, pp.165-172.
42- Zudaire, L., Lafarga, T., Viñas, I., Abadias, M., Brunton, N. and Aguiló-Aguayo, I., 2019. Effect of ultrasound pre-treatment on the physical, microbiological, and antioxidant properties of calçots. Food and Bioprocess Technology, 12(3), pp.387-394.
43- Kaveh, S., Sadeghi Mahoonak, A., Ghorbani, M., Sarabandi K. (2020). Comparison of antioxidant properties of fenugreek seed protein hydrolyzed with alcalase and pancreatin. Journal of Innovation in Food Science and Technology, 11(4),77-88.
44- Zhao, Q., Xiong, H., Selomulya, C., Chen, X.D., Zhong, H., Wang, S., Sun, W. and Zhou, Q., 2012. Enzymatic hydrolysis of rice dreg protein: effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food chemistry, 134(3), pp.1360-1367.
45- Weiss, J., Gulseren, I. and Kjartansson, G., 2011. Physicochemical effects of high-intensity ultrasonication on food proteins and carbohydrates. Nonthermal processing Technologies for Food, pp.109-130.
46- Wen, C., Zhang, J., Zhang, H., Duan, Y. and Ma, H., 2019. Effects of divergent ultrasound pretreatment on the structure of watermelon seed protein and the antioxidant activity of its hydrolysates. Food chemistry, 299, p.125165.
47- Uluko, H., Zhang, S., Liu, L., Tsakama, M., Lu, J. and Lv, J., 2015. Effects of thermal, microwave, and ultrasound pretreatments on antioxidative capacity of enzymatic milk protein concentrate hydrolysates. Journal of Functional Foods, 18, pp.1138-1146.
48- Afanas' ev, Y. V., & Shlyaptsev, V. N. (1989). Formation of a population inversion of transitions in Ne-like ions in steady-state and transient plasmas. Soviet Journal of Quantum Electronics, 19(12), 1606.‌
49- Kurozawa, L.E., Park, K.J. and Hubinger, M.D., 2008. Optimization of the enzymatic hydrolysis of chicken meat using response surface methodology. Journal of Food Science, 73(5), pp.C405-C412.
50- Klompong, V., Benjakul, S., Kantachote, D. and Shahidi, F., 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food chemistry, 102(4), pp.1317-1327.
51- Xie, Z., Huang, J., Xu, X. and Jin, Z., 2008. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food chemistry, 111(2), pp.370-376.
52- Maqsoodlou, A. Sadeghi Mahonek, A. Mohebuddini, H. 2016. Investigating the antioxidant properties of bee pollen hydrolyzed protein. Iran Journal of Food Sciences and Industries, 14(73), 240-227.
53- Pownall, T. L., Udenigwe, C. C., & Aluko, R. E. (2010). Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) enzymatic protein hydrolysate fractions. Journal of agricultural and food chemistry, 58(8), 4712-4718.‌
54- Kaveh, S., Mahoonak, A.S., Ghorbani, M. and Jafari, S.M., 2022. Fenugreek seed (Trigonella foenum graecum) protein hydrolysate loaded in nanosized liposomes: Characteristic, storage stability, controlled release and retention of antioxidant activity. Industrial Crops and Products, 182, p.114908.
55- Mohammadi, Adele, Arabshahi Deloui, Zinoviadou, Kiriaki, Galanakis, & Charis. (2017). Antioxidant Properties of Various Solvent Extracts of Indian Frankincense (Boswellia serrata) Oleogum Resin. Iran Food Science and Industry Research Journal, 13(3), 28-38.
56- Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y. and Nasri, M., 2009. Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food chemistry, 114(4), pp.1198-1205.
57- Torruco-Uco, J., Chel-Guerrero, L., Martínez-Ayala, A., Dávila-Ortíz, G., & Betancur-Ancona, D. (2009). Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris seeds. LWT-Food Science and Technology, 42(10), 1597-1604.‌
58- Arabshahi-Delouee, S. and Urooj, A., 2007. Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food chemistry, 102(4), pp.1233-1240.
59- Mazloumi, S. N., Sa Sadeghi Mahonek, A., Ghorbani, M., Houshmand, G. 2018. Determining the optimal conditions for the production of antioxidant peptides obtained from the hydrolysis of orange core protein with alcalase enzyme. Iranian journal of food science and industry. 16(88), 343-356.
60- Weiss, J., Gulseren, I. and Kjartansson, G., 2011. Physicochemical effects of high-intensity ultrasonication on food proteins and carbohydrates. Nonthermal processing Technologies for Food, pp.109-130.
61- Wen, C., Zhang, J., Zhou, J., Duan, Y., Zhang, H. and Ma, H., 2018. Effects of slit divergent ultrasound and enzymatic treatment on the structure and antioxidant activity of arrowhead protein. Ultrasonics sonochemistry, 49, pp.294-302.
62- Fadimu, G.J., Gill, H., Farahnaky, A. and Truong, T., 2021. Investigating the impact of ultrasound pretreatment on the physicochemical, structural, and antioxidant properties of lupin protein hydrolysates. Food and Bioprocess Technology, 14(11), pp.2004-2019.