[1] Rezaeigolestani, M., Misaghi, A., Khanjari, A., Basti, A. A., Abdulkhani, A. Fayazfar, S. 2017. Antimicrobial evaluation of novel poly-lactic acid based nanocomposites incorporated with bioactive compounds in-vitro and in refrigerated vacuum-packed cooked sausages. International Journal of Food Microbiology. 260, 1-10.
[2] Shakour, N., Khoshkhoo, Z., Akhondzadeh Basti, A., Khanjari, A., Mahasti Shotorbani, P. 2021. Investigating the properties of PLA-nanochitosan composite films containing Ziziphora Clinopodioides essential oil and their impacts on oxidative spoilage of Oncorhynchus mykiss fillets. Food Sci Nutr. 00:1–13.
[3] Heydari-Majd. M, Ghanbarzadeh. B, Shahidi-Noghabi. M, Najafi. M. A. Mohammadyar. H, 2019. A new active nanocomposite film based on PLA/ZnO nanoparticle/essential oils for the preservation of refrigerated Otolithes ruber fillets. Food Packaging and Shelf Life. 19: 94–103.
[4] Salimiraad. S, Safaeian. S, Akhondzadeh Basti. A, Khanjari. A, Mousavi Nadoushan. R. 2022. Characterization of novel probiotic nanocomposite films based on nano chitosan/ nano cellulose/ gelatin for the preservation of fresh chicken fillets. LWT - Food Science and Technology. 162. 113429.
[5] Jensen, A., Lim, L. T., Barbut, S., and Marcone, M. 2015. Development and characterization of soy protein films incorporated with cellulose fibers using a hot surface casting technique. LWT-Food Science and Technology. 60 (1). 162-170.
[6] Zabihollahi, N., Alizadeh, A., Almasi, H., Hanifian, S., & Hamishekar, H. 2020. Development and characterization of carboxymethyl cellulose based probiotic nanocomposite film containing cellulose nanofiber and inulin for chicken fillet shelf life extension. International Journal of Biological Macromolecules. 160 (1). 409- 417.
[7] Soni, E.B. Hassan, M.W. Schilling, B. Mahmoud, Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhance mechanical and barrier properties, Carbohydr. Polym. 151. 779–789.
[8] Abdulkhani, A., Hosseinzadeh, J., Ashori, A., Dadashi, S., and Takzare, Z. 2014. Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polymer Testing. 35. 73-79.
[9] Niu, Y. Liu, Y. Song, J. Han, H. Pan. 2018. Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid /chitosan composite film for food packaging, Carbohydr. Polym. 183. 102–109.
[10] Odila Pereira, J. Soares, S. Sousa, A.R. Madureira, A. Gomes, M. Pintado. 2016. Edible films as carrier for lactic acid bacteria, LWT - Food Sci. Technol. 73. 543–550.
[11] Aymerich, T., Rodríguez, M., Garriga, M., Bover-Cid, S. 2019. Assessment of the bioprotective potential of lactic acid bacteria against Listeria monocytogenes on vacuum-packed cold-smoked salmon stored at 8° C. Food microbiology. 83. 64-70.
[12] Espitia, P. J. P., Batista, R. A., Azeredo, H. M. C., Otoni, C. G. 2016. Probiotics and their potential applications in active edible films and coatings. Food Res Int. 90. 42–52.
[13] Mozaffarzogh, M., Misaghi, A., Shahbazi, Y., & Kamkar, A. 2020. Evaluation of probiotic carboxymethyl cellulose-sodium caseinate films and their application in extending shelf life quality of fresh trout fillets. LWT. 126. 109305.
[14] Pavli, F., Tassou ,C., Nychas, G. J. E., & Chorianopoulos, N. 2018. Probiotic incorporation in edible films and coatings: Bioactive solution for functional foods. Int J Mol Sci. 19. 1–17.
[15] Atallah, A. A. 2016. The production of bio-yoghurt with probiotic bacteria, Royal jelly and Bee pollen grains. Journal of Nutrition & Food Sciences. 6 (3). 510.
[16] Ghasemi, Zh., Alizadeh Khaled-Abad, M., Almasi, H., Nikoo, M. 2022. Carboxymethyl cellulose based bioactive edible films with Lactobacillus casei and fish protein hydrolysates. Iranian Food Science and Technology Research Journal. 17 (6). 85-102
[17] Soukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., Fisk, I. D. 2014a. Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food Chem. 159. 302–308.
[18] Erdohan, Z. Ö., Çam, B., Turhan, K. N. 2013. Characterization of antimicrobial polylactic acid based films. Journal of Food Engineering. 119 (2). 308- 315.
[19] ASTM. 1996. Standard test methods for tensile properties of thin plastic sheeting, D882-91. Annual book of ASTM. Philadelphia, PA: American society for Testing and Material.
[20] Ojagh, S. M., Rezaei, M., Razavi, S. H., Hosseini, S. M. H. 2010. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry. 122 (1). 161-166.
[21] Bertan, L. C., Tanada-Palmu, P .S., Siani, A. C. Grosso, C. R. F. 2005. Effect of fatty acids and Brazilian elemi on composite films based on gelatin. Food Hydrocolloids 19: 73- 82.
[22] Soukoulis, C., Yonekura, L., Gan, H.H., Behboudi-Jobbehdar, S., Parmenter, C. Fisk, I. 2014b. Probiotic edible films as a new strategy for developing functional bakery products: The case of pan bread. Food Hydrocolloids. 39. 231–242.
[23] Soukoulis, C., Behboudi-Jobbehdar, S., Macnaughtan, W., Parmenter, C., Fisk, I. D. 2017. Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate. Food Hydrocolloids. 70. 345–355
[24] Karami N, Kamkar A, Shahbazi Y, Misaghi A.2019. Edible films based on chitosan-flaxseed mucilage: in vitro antimicrobial and antioxidant properties and their application on survival of food-borne pathogenic bacteria in raw minced trout fillets. Pharm Biomed Res. 5 (2).10-16.
[25] La Storia, A., Di Giuseppe, F. A., Volpe, S., Oliviero, V., Villani, F., & Torrieri, E. 2020. Physical properties and antimicrobial activity of bioactive film based on whey protein and Lactobacillus curvatus 54M16 producer of bacteriocins. Food Hydrocolloids. 105959.
[26] Mirabolghasemi S, Najafi M, Azizi A, Haji Bagherian M. 2021. Preparation and study of physical and mechanical behavior of polylactic acid bionanocomposites reinforced with Cellulose Nanocrystal and silver nanoparticles. Journal of Applied Research of Chemical -Polymer Engineering. 5 (3). 25-13.
[27] Paralikar S. A., Simonsen J., Lombardi J., 2008. Poly (Vinyl Alcohol)/ Cellulose Nanocrystal Barrier Membranes. Journal of Membrane Science. 320. 258-248.
[28] Souza, B. W., Cerqueira, M. A., Teixeira, J. A., Vicente, A. A. 2010. The use of electric fields for edible coatings and films development and production: A review. Food Engineering Reviews. 2(4). 244-255.
[29] Kanmani, P., Lim, S. T. 2013. Development and characterization of novel probiotic-residing pullulan/starch edible films. Food chemistry. 141(2). 1041-1049.
[30] Bekhit, M., Arab-Tehrany, E., Kahn, C. J. F., Cleymand, F., Fleutot, S., Desobry, S. 2018. Bioactive films containing alginate-pectin composite microbeads with lactococcus lactis subsp. Lactis: Physicochemical characterization and antilisterial activity. International Journal of Molecular Sciences. 19(2). 1–12.
[31] Ebrahimi, B., Mohammadi, R., Rouhi, M., Mortazavian, A. M., Shojaee-Aliabadi, S., Koushki, M. R. 2018. Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT - Food Science and Technology. 87. 54–60.
[32] Jonoobi M., Mathew A. P., Abdi M. M., Makinejad M. D., Oksman K., 2012. A Comparison of Modified and Unmodified Cellulose Nanofiber Reinforced Polylactic Acid (PLA) Prepared by Twin Screw Extrusion, Journal of Polymers and the Environment. 20 (4). 997-991.
[33] Kord B., Jari E., Najafi A., Tazakorrezaie V. 2014. Effect of Nanoclay on the Decay Resistance and Physicomechanical Properties of Natural Fiber-Reinforced Plastic Composites against White-Rot Fungi (Trametes versicolor), Journal of Thermoplastic Composite Materials. 8 (27). 1096-1085.
[34] Dai, L., Yuan, Y., Song, Z., Qiu, Y., Yue, T. 2018. Preparation and characterization of Lactobacilli‐loaded composite films with sustaining antipathogenic activity and preservation effect. Journal of Food Science. 83(10). 2511-2519.
[35] FAO. 2018. The State of World Fisheries and Aquaculture 2018‐Meeting the sustainable development goals. License: CC BY-NC-SA 3.0 IGO.