بررسی ویژگی‌های فیزیکی و مکانیکی فیلم نانوکامپوزیتی پلی لاکتیک اسید-نانو سلولز حاوی باکتری‌ پروبیوتیک لاکتوباسیلوس کازئی

نویسندگان
1 1) گروه علوم و صنایع غذایی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی،آمل، ایران
2 گروه علوم و صنایع غذایی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی،آمل، ایران
3 گروه علوم و صنایع غذایی، واحد ساری، دانشگاه آزاد اسلامی،ساری، ایران
چکیده
در این مطالعه، بقای باکتری پروبیوتیک لاکتوباسیلوس کازئی اضافه شده به فیلم نانوکامپوزیتی پلی لاکتیک اسید-نانو سلولز طی دوره 16 روزه نگهداری در یخچال بررسی شد. بدین منظور 3 فیلم خوراکی شامل، پلی­لاکتیک اسید، پلی­لاکتیک اسید + نانو­سلولز، پلی­لاکتیک اسید+ نانو سلولز+ لاکتوباسیلوس کازئی (log CFU/g 9) تهیه و ویژگی­های فیزیکی و مکانیکی فیلم­ها و همچنین بقای باکتری لاکتوباسیلوس کازئی بررسی شد. نتایج آزمون مکانیکی نشان داد استفاده از باکتری پروبیوتیک سبب کاهش مقاومت کششی و کشش تا قبل از نقطه پارگی فیلم پلی­لاکتیک اسید- نانوسلولز شد (05/0>P) اما افزودن نانوسلولز سبب بهبود ویژگی­های مکانیکی فیلم پلی­لاکتیک اسید شد. نتایج حاصل از آزمون­های فیزیکی شامل رطوبت، حلالیت، نفوذ­پذیری به بخار آب نشان داد افزودن باکتری پروبیوتیک و نانوسلولز سبب بهبود خواص فیزیکی فیلم شد، اما کدورت فیلم­ها افزایش یافت (05/0>P). براساس نتایج مطالعه حاضر، با افزایش زمان نگهداری، بقای باکتری­های پروبیوتیک در نانوفیلم کاهش یافت و در انتهای دوره نگهداری مقادیر آن برابر log CFU/g12/6 بود، اما از محدوده مجاز (log CFU/g 6) برخوردار بود. بنابراین، ترکیب سویه‌ پروبیوتیک لاکتوباسیلوس کازئی در فیلم خوراکی می‌تواند حامل مناسب آن در دمای یخچال باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the physical and mechanical properties of polylactic acid-nanocellulose nanocomposite film containing Lactobacillus casei probiotic bacteria

نویسندگان English

Masoumeh Khanjani 1
peiman ariaii 2
Leila Najafian 3
Mahro Esmaeili 2
1 Department of Food Science and Technology, Ayatolla Amoli Branch, Islamic Azad University, Amol, Iran
2 1) Department of Food Science and Technology, Ayatolla Amoli Branch, Islamic Azad University, Amol, Iran
3 Department of Food Science & Technology,Sari Branch, Islamic Azad University, Sari, Iran
چکیده English

In this study, the survival of Lactobacillus casei probiotic bacteria added to polylactic acid-nanocellulose nanocomposite film during 16 days of storage in the refrigerator was investigated. For this purpose, three edible films including polylactic acid, polylactic acid + nano cellulose, polylactic acid + nano cellulose+ Lactobacillus casei (9 log CFU/g) were prepared and the physical and mechanical characteristics of the films as well as the survival of Lactobacillus casei bacteria were investigated. The results of the mechanical test showed that the use of probiotic bacteria decreased the tensile strength and elongation at break of the polylactic acid-nanocellulose film (P < 0.05), but the addition of nanocellulose improved the mechanical properties of the polylactic acid film. The results of physical tests including humidity, solubility, water vapor permeability showed that the addition of probiotic bacteria and nanocellulose improved the physical properties of the film, but the opacity of the films increased (P<0.05). According to the results of the present study, with the increase in storage time, the survival of probiotic bacteria in the nanofilm decreased, and at the end of the storage period, its values were equal to 6.12 log CFU/g, but it was within the permissible range (6 log CFU/g).Therefore, the composition of Lactobacillus casei probiotic strain in the edible film can be its suitable carrier at refrigerator temperature

کلیدواژه‌ها English

Nanocomposite
nanocellulose
Edible film
probiotics
Viability
[1] Rezaeigolestani, M., Misaghi, A., Khanjari, A., Basti, A. A., Abdulkhani, A. Fayazfar, S. 2017. Antimicrobial evaluation of novel poly-lactic acid based nanocomposites incorporated with bioactive compounds in-vitro and in refrigerated vacuum-packed cooked sausages. International Journal of Food Microbiology. 260, 1-10.
[2] Shakour, N., Khoshkhoo, Z., Akhondzadeh Basti, A., Khanjari, A., Mahasti Shotorbani, P. 2021. Investigating the properties of PLA-nanochitosan composite films containing Ziziphora Clinopodioides essential oil and their impacts on oxidative spoilage of Oncorhynchus mykiss fillets. Food Sci Nutr. 00:1–13.
[3] Heydari-Majd. M, Ghanbarzadeh. B, Shahidi-Noghabi. M, Najafi. M. A. Mohammadyar. H, 2019. A new active nanocomposite film based on PLA/ZnO nanoparticle/essential oils for the preservation of refrigerated Otolithes ruber fillets. Food Packaging and Shelf Life. 19: 94–103.
[4] Salimiraad. S, Safaeian. S, Akhondzadeh Basti. A, Khanjari. A, Mousavi Nadoushan. R. 2022. Characterization of novel probiotic nanocomposite films based on nano chitosan/ nano cellulose/ gelatin for the preservation of fresh chicken fillets. LWT - Food Science and Technology. 162. 113429.
[5] Jensen, A., Lim, L. T., Barbut, S., and Marcone, M. 2015. Development and characterization of soy protein films incorporated with cellulose fibers using a hot surface casting technique. LWT-Food Science and Technology. 60 (1). 162-170.
[6] Zabihollahi, N., Alizadeh, A., Almasi, H., Hanifian, S., & Hamishekar, H. 2020. Development and characterization of carboxymethyl cellulose based probiotic nanocomposite film containing cellulose nanofiber and inulin for chicken fillet shelf life extension. International Journal of Biological Macromolecules. 160 (1). 409- 417.
[7] Soni, E.B. Hassan, M.W. Schilling, B. Mahmoud, Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhance mechanical and barrier properties, Carbohydr. Polym. 151. 779–789.
[8] Abdulkhani, A., Hosseinzadeh, J., Ashori, A., Dadashi, S., and Takzare, Z. 2014. Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polymer Testing. 35. 73-79.
[9] Niu, Y. Liu, Y. Song, J. Han, H. Pan. 2018. Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid /chitosan composite film for food packaging, Carbohydr. Polym. 183. 102–109.
[10] Odila Pereira, J. Soares, S. Sousa, A.R. Madureira, A. Gomes, M. Pintado. 2016. Edible films as carrier for lactic acid bacteria, LWT - Food Sci. Technol. 73. 543–550.
[11] Aymerich, T., Rodríguez, M., Garriga, M., Bover-Cid, S. 2019. Assessment of the bioprotective potential of lactic acid bacteria against Listeria monocytogenes on vacuum-packed cold-smoked salmon stored at 8° C. Food microbiology. 83. 64-70.
[12] Espitia, P. J. P., Batista, R. A., Azeredo, H. M. C., Otoni, C. G. 2016. Probiotics and their potential applications in active edible films and coatings. Food Res Int. 90. 42–52.
[13] Mozaffarzogh, M., Misaghi, A., Shahbazi, Y., & Kamkar, A. 2020. Evaluation of probiotic carboxymethyl cellulose-sodium caseinate films and their application in extending shelf life quality of fresh trout fillets. LWT. 126. 109305.
[14] Pavli, F., Tassou ,C., Nychas, G. J. E., & Chorianopoulos, N. 2018. Probiotic incorporation in edible films and coatings: Bioactive solution for functional foods. Int J Mol Sci. 19. 1–17.
[15] Atallah, A. A. 2016. The production of bio-yoghurt with probiotic bacteria, Royal jelly and Bee pollen grains. Journal of Nutrition & Food Sciences. 6 (3). 510.
[16] Ghasemi, Zh., Alizadeh Khaled-Abad, M., Almasi, H., Nikoo, M. 2022. Carboxymethyl cellulose based bioactive edible films with Lactobacillus casei and fish protein hydrolysates. Iranian Food Science and Technology Research Journal. 17 (6). 85-102
[17] Soukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., Fisk, I. D. 2014a. Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food Chem. 159. 302–308.
[18] Erdohan, Z. Ö., Çam, B., Turhan, K. N. 2013. Characterization of antimicrobial polylactic acid based films. Journal of Food Engineering. 119 (2). 308- 315.
[19] ASTM. 1996. Standard test methods for tensile properties of thin plastic sheeting, D882-91. Annual book of ASTM. Philadelphia, PA: American society for Testing and Material.
[20] Ojagh, S. M., Rezaei, M., Razavi, S. H., Hosseini, S. M. H. 2010. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry. 122 (1). 161-166.
[21] Bertan, L. C., Tanada-Palmu, P .S., Siani, A. C. Grosso, C. R. F. 2005. Effect of fatty acids and Brazilian elemi on composite films based on gelatin. Food Hydrocolloids 19: 73- 82.
[22] Soukoulis, C., Yonekura, L., Gan, H.H., Behboudi-Jobbehdar, S., Parmenter, C. Fisk, I. 2014b. Probiotic edible films as a new strategy for developing functional bakery products: The case of pan bread. Food Hydrocolloids. 39. 231–242.
[23] Soukoulis, C., Behboudi-Jobbehdar, S., Macnaughtan, W., Parmenter, C., Fisk, I. D. 2017. Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate. Food Hydrocolloids. 70. 345–355
[24] Karami N, Kamkar A, Shahbazi Y, Misaghi A.2019. Edible films based on chitosan-flaxseed mucilage: in vitro antimicrobial and antioxidant properties and their application on survival of food-borne pathogenic bacteria in raw minced trout fillets. Pharm Biomed Res. 5 (2).10-16.
[25] La Storia, A., Di Giuseppe, F. A., Volpe, S., Oliviero, V., Villani, F., & Torrieri, E. 2020. Physical properties and antimicrobial activity of bioactive film based on whey protein and Lactobacillus curvatus 54M16 producer of bacteriocins. Food Hydrocolloids. 105959.
[26] Mirabolghasemi S, Najafi M, Azizi A, Haji Bagherian M. 2021. Preparation and study of physical and mechanical behavior of polylactic acid bionanocomposites reinforced with Cellulose Nanocrystal and silver nanoparticles. Journal of Applied Research of Chemical -Polymer Engineering. 5 (3). 25-13.
[27] Paralikar S. A., Simonsen J., Lombardi J., 2008. Poly (Vinyl Alcohol)/ Cellulose Nanocrystal Barrier Membranes. Journal of Membrane Science. 320. 258-248.
[28] Souza, B. W., Cerqueira, M. A., Teixeira, J. A., Vicente, A. A. 2010. The use of electric fields for edible coatings and films development and production: A review. Food Engineering Reviews. 2(4). 244-255.
[29] Kanmani, P., Lim, S. T. 2013. Development and characterization of novel probiotic-residing pullulan/starch edible films. Food chemistry. 141(2). 1041-1049.
[30] Bekhit, M., Arab-Tehrany, E., Kahn, C. J. F., Cleymand, F., Fleutot, S., Desobry, S. 2018. Bioactive films containing alginate-pectin composite microbeads with lactococcus lactis subsp. Lactis: Physicochemical characterization and antilisterial activity. International Journal of Molecular Sciences. 19(2). 1–12.
[31] Ebrahimi, B., Mohammadi, R., Rouhi, M., Mortazavian, A. M., Shojaee-Aliabadi, S., Koushki, M. R. 2018. Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT - Food Science and Technology. 87. 54–60.
[32] Jonoobi M., Mathew A. P., Abdi M. M., Makinejad M. D., Oksman K., 2012. A Comparison of Modified and Unmodified Cellulose Nanofiber Reinforced Polylactic Acid (PLA) Prepared by Twin Screw Extrusion, Journal of Polymers and the Environment. 20 (4). 997-991.
[33] Kord B., Jari E., Najafi A., Tazakorrezaie V. 2014. Effect of Nanoclay on the Decay Resistance and Physicomechanical Properties of Natural Fiber-Reinforced Plastic Composites against White-Rot Fungi (Trametes versicolor), Journal of Thermoplastic Composite Materials. 8 (27). 1096-1085.
[34] Dai, L., Yuan, Y., Song, Z., Qiu, Y., Yue, T. 2018. Preparation and characterization of Lactobacilli‐loaded composite films with sustaining antipathogenic activity and preservation effect. Journal of Food Science. 83(10). 2511-2519.
[35] FAO. 2018. The State of World Fisheries and Aquaculture 2018‐Meeting the sustainable development goals. License: CC BY-NC-SA 3.0 IGO.