مدل‌سازی اثر فراصوت بر ویسکوزیته، ضریب قوام و شاخص رفتار جریان غلظت‌های مختلف صمغ گزانتان

نویسندگان
1 دانشیار، گروه علوم و صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران
2 دانشجوی کارشناسی ارشد، گروه علوم و صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران
چکیده
استفاده از امواج فراصوت برای تغییر ساختار صمغ‌ها، منجر به اصلاح و بهبود ویژگی‌های عملکردی و خواص رئولوژیکی آنها می‌شود. در این پژوهش اثرات شدت فراصوت و زمان تیماردهی بر ویسکوزیته ظاهری، ضریب قوام و شاخص رفتار جریان غلظت‌های مختلف صمغ گزانتان بررسی و مدل‌سازی شد. برای مدل‌سازی فرآیند نیز از روش الگوریتم ژنتیک- شبکه عصبی مصنوعی با سه ورودی (توان فراصوت، زمان تیماردهی و غلظت صمغ) و سه خروجی (ویسکوزیته، ضریب قوام و شاخص رفتار جریان) استفاده گردید. ویسکوزیته ظاهری نمونه شاهد صمغ گزانتان (تیمار نشده) با غلظت‌های 1/0، 15/0 و 2/0 درصد به ترتیب برابر 0/21، 9/39 و 5/66 میلی‌پاسکال ثانیه بود. نتایج این پژوهش نشان داد که با افزایش شدت و زمان اعمال فراصوت، ویسکوزیته صمغ کاهش می‌یابد. تیماردهی با امواج فراصوت به مدت 20 دقیقه باعث کاهش معنی‌دار ویسکوزیته ظاهری صمغ گزانتان از 9/39 به 2/23 میلی‌پاسکال ثانیه گردید (05/0>p). نتایج مدل‌سازی به روش الگوریتم ژنتیک- شبکه عصبی مصنوعی نشان داد شبکه‌ای با ساختار 3-5-3 در یک لایه پنهان و با استفاده از تابع فعال‌سازی تانژانت هیپربولیک می‌تواند پارامترهای رئولوژیکی صمغ گزانتان را با ضریب همبستگی بالا و مقدار خطا پایین پیش‌بینی نماید. مقادیر میانگین مربعات خطا (MSE)، میانگین مربعات خطا نرمالیزه شده (NMSE)، میانگین خطا مطلق (MAE) و ضریب همبستگی (r) برای پیش‌بینی ویسکوزیته ظاهری صمغ گزانتان به ترتیب برابر 17/73، 20/0، 48/6 و 90/0 بود. بر اساس نتایج آزمون آنالیز حساسیت، شدت ‌تیماردهی با فراصوت به‌عنوان مؤثرترین عوامل در تغییر ویسکوزیته ظاهری، ضریب قوام و شاخص رفتار جریان صمغ گزانتان بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modeling the effect of ultrasound on viscosity, consistency coefficient, and flow behavior index of different concentrations of xanthan gum

نویسندگان English

Fakhreddin Salehi 1
Moein Inanloodoghouz 2
1 Associate Professor, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
2 MSc Student, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
چکیده English

The use of ultrasonic waves to change the structure of the gums leads to the modification and improvement of their functional characteristics and rheological properties. In this research, the effects of ultrasonic intensity and treatment time on apparent viscosity, consistency coefficient, and flow behavior index of different concentrations of xanthan gum were investigated and modeled. Genetic algorithm-artificial neural network method with three inputs (ultrasonic power, treatment time and gum concentration) and three outputs (viscosity, consistency coefficient, and flow behavior index) was used to model the process. The apparent viscosities of the xanthan gum control sample (untreated) at concentrations of 0.1, 0.15, and 0.2% were 21.0, 39.9, and 66.5 mPa.s, respectively. The results of this research showed that gum viscosity decreased with increasing intensity and duration of ultrasound application. Ultrasonic treatment for 20 min significantly reduced the apparent viscosity of xanthan gum from 39.9 to 23.2 mPa.s (p< 0.05). The genetic algorithm-artificial neural network modeling results showed that the network with 3-5-3 structure in a hidden layer and using the hyperbolic tangent activation function can predict the rheological parameters of xanthan gum with high correlation coefficient and low error value. Values of mean squared error (MSE), normalized mean squared error (NMSE), mean absolute error (MAE), and correlation coefficient (r) to predict the apparent viscosity of xanthan gum were 73.17, 0.20, 6.48, and 0.90, respectively. Based on the results of the sensitivity analysis test, ultrasonic treatment intensity was the most effective factor in changing the apparent viscosity, consistency coefficient, and flow behavior index of xanthan gum.

کلیدواژه‌ها English

Apparent viscosity
Genetic algorithm-artificial neural network
Hyperbolic tangent
Sensitivity Analysis
[1] Nsengiyumva, E. M., Heitz, M. P., Alexandridis, P. 2023. Thermal hysteresis phenomena in aqueous xanthan gum solutions, Food Hydrocolloids. 144, 108973.
[2] Nejadmansouri, M., Shad, E., Razmjooei, M., Safdarianghomsheh, R., Delvigne, F., Khalesi, M. 2020. Production of xanthan gum using immobilized Xanthomonas campestris cells: Effects of support type, Biochemical Engineering Journal. 157, 107554.
[3] Sarraf, M., Naji-Tabasi, S., Beig-babaei, A. 2021. Influence of calcium chloride and pH on soluble complex of whey protein-basil seed gum and xanthan gum, Food Science & Nutrition. 9, 6728-6736.
[4] Jiang, T., Zhao, J.-d., Zhang, J.-r. 2022. Splitting tensile strength and microstructure of xanthan gum-treated loess, Scientific Reports. 12, 9921.
[5] Ghaderi, S., Hesarinejad, M. A., Shekarforoush, E., Mirzababaee, S. M., Karimpour, F. 2020. Effects of high hydrostatic pressure on the rheological properties and foams/emulsions stability of Alyssum homolocarpum seed gum, Food Science & Nutrition. 8, 5571-5579.
[6] Mirzababaee, S. M., Ozmen, D., Hesarinejad, M. A., Toker, O. S., Yeganehzad, S. 2022. A study on the structural, physicochemical, rheological and thermal properties of high hydrostatic pressurized pearl millet starch, International Journal of Biological Macromolecules. 223, 511-523.
[7] Salehi, F. 2023. Recent advances in the ultrasound-assisted osmotic dehydration of agricultural products: A review, Food Bioscience. 51, 102307.
[8] Salehi, F., Razavi Kamran, H., Goharpour, K. 2023. Effects of ultrasound time, xanthan gum, and sucrose levels on the osmosis dehydration and appearance characteristics of grapefruit slices: process optimization using response surface methodology, Ultrasonics Sonochemistry. 98, 106505.
[9] Li, R., Feke, D. L. 2015. Rheological and kinetic study of the ultrasonic degradation of xanthan gum in aqueous solution: Effects of pyruvate group, Carbohydrate Polymers. 124, 216-221.
[10] Li, J., Li, B., Geng, P., Song, A.-X., Wu, J.-Y. 2017. Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac glucomannan) in water, Food Hydrocolloids. 70, 14-19.
[11] Muñoz-Almagro, N., Montilla, A., Moreno, F. J., Villamiel, M. 2017. Modification of citrus and apple pectin by power ultrasound: Effects of acid and enzymatic treatment, Ultrasonics Sonochemistry. 38, 807-819.
[12] Raoufi, N., Kadkhodaee, R., Fang, Y., Phillips, G. O. 2019. Ultrasonic degradation of Persian gum and gum tragacanth: Effect on chain conformation and molecular properties, Ultrasonics Sonochemistry. 52, 311-317.
[13] Farizadeh, S., Abbasi, H. 2023. Effect of ultrasonic waves on structural, functional and rheological properties of locust bean gum, Iranian Food Science and Technology Research Journal. 19, 365-381.
[14] Yang, Y., Chen, D., Yu, Y., Huang, X. 2020. Effect of ultrasonic treatment on rheological and emulsifying properties of sugar beet pectin, Food Science & Nutrition. 8, 4266-4275.
[15] Wei, Q., Lv, M., Wang, B., Sun, J., Wang, D. 2023. A comparative study of optimized conditions of QuEChERS to determine the pesticide multiresidues in Lycium barbarum using response surface methodology and genetic algorithm-artificial neural network, Journal of Food Composition and Analysis. 120, 105356.
[16] Lee, G. E., Kim, R. H., Lim, T., Kim, J., Kim, S., Kim, H.-G., Hwang, K. T. 2022. Optimization of accelerated solvent extraction of ellagitannins in black raspberry seeds using artificial neural network coupled with genetic algorithm, Food Chemistry. 396, 133712.
[17] Salehi, F. 2020. Recent advances in the modeling and predicting quality parameters of fruits and vegetables during postharvest storage: A review, International Journal of Fruit Science. 20, 506-520.
[18] Fadaie, M., Hosseini Ghaboos, S. H., Beheshti, B. 2020. Characterization of dried persimmon using infrared dryer and process modeling using genetic algorithm-artificial neural network method, Journal of Food Science and Technology (Iran). 17, 189-200.
[19] Koocheki, A., Hesarinejad, M. A., Mozafari, M. R. 2022. Lepidium perfoliatum seed gum: investigation of monosaccharide composition, antioxidant activity and rheological behavior in presence of salts, Chemical and Biological Technologies in Agriculture. 9, 61.
[20] Xuewu, Z., Xin, L., Dexiang, G., Wei, Z., Tong, X., Yonghong, M. 1996. Rheological models for xanthan gum, Journal of Food Engineering. 27, 203-209.
[21] Song, K.-W., Kim, Y.-S., Chang, G.-S. 2006. Rheology of concentrated xanthan gum solutions: Steady shear flow behavior, Fibers and Polymers. 7, 129-138.
[22] Salehi, F., Razavi Kamran, H., Goharpour, K. 2023. Production and evaluation of total phenolics, antioxidant activity, viscosity, color, and sensory attributes of quince tea infusion: Effects of drying method, sonication, and brewing process, Ultrasonics Sonochemistry. 99, 106591.
[23] Zheng, Z.-Y., Guo, X.-N., Zhu, K.-X., Peng, W., Zhou, H.-M. 2017. Artificial neural network – Genetic algorithm to optimize wheat germ fermentation condition: Application to the production of two anti-tumor benzoquinones, Food Chemistry. 227, 264-270.
[24] Satorabi, M., Salehi, F., Rasouli, M. 2021. The influence of xanthan and balangu seed gums coats on the kinetics of infrared drying of apricot slices: GA-ANN and ANFIS modeling, International Journal of Fruit Science. 21, 468-480.
[25] Oloruntoba, D., Ampofo, J., Ngadi, M. 2022. Effect of ultrasound pretreated hydrocolloid batters on quality attributes of fried chicken nuggets during post-fry holding, Ultrasonics Sonochemistry. 91, 106237.
[26] Ghorbani, M., Naghipour, L., Karimi, V., Farhoudi, R. 2013. Sensitivity analysis of the effective input parameters upon the ozone concentration using artificial neural networks, Iranian Journal of Health and Environment. 6, 11-22.