[1] Nsengiyumva, E. M., Heitz, M. P., Alexandridis, P. 2023. Thermal hysteresis phenomena in aqueous xanthan gum solutions, Food Hydrocolloids. 144, 108973.
[2] Nejadmansouri, M., Shad, E., Razmjooei, M., Safdarianghomsheh, R., Delvigne, F., Khalesi, M. 2020. Production of xanthan gum using immobilized Xanthomonas campestris cells: Effects of support type, Biochemical Engineering Journal. 157, 107554.
[3] Sarraf, M., Naji-Tabasi, S., Beig-babaei, A. 2021. Influence of calcium chloride and pH on soluble complex of whey protein-basil seed gum and xanthan gum, Food Science & Nutrition. 9, 6728-6736.
[4] Jiang, T., Zhao, J.-d., Zhang, J.-r. 2022. Splitting tensile strength and microstructure of xanthan gum-treated loess, Scientific Reports. 12, 9921.
[5] Ghaderi, S., Hesarinejad, M. A., Shekarforoush, E., Mirzababaee, S. M., Karimpour, F. 2020. Effects of high hydrostatic pressure on the rheological properties and foams/emulsions stability of Alyssum homolocarpum seed gum, Food Science & Nutrition. 8, 5571-5579.
[6] Mirzababaee, S. M., Ozmen, D., Hesarinejad, M. A., Toker, O. S., Yeganehzad, S. 2022. A study on the structural, physicochemical, rheological and thermal properties of high hydrostatic pressurized pearl millet starch, International Journal of Biological Macromolecules. 223, 511-523.
[7] Salehi, F. 2023. Recent advances in the ultrasound-assisted osmotic dehydration of agricultural products: A review, Food Bioscience. 51, 102307.
[8] Salehi, F., Razavi Kamran, H., Goharpour, K. 2023. Effects of ultrasound time, xanthan gum, and sucrose levels on the osmosis dehydration and appearance characteristics of grapefruit slices: process optimization using response surface methodology, Ultrasonics Sonochemistry. 98, 106505.
[9] Li, R., Feke, D. L. 2015. Rheological and kinetic study of the ultrasonic degradation of xanthan gum in aqueous solution: Effects of pyruvate group, Carbohydrate Polymers. 124, 216-221.
[10] Li, J., Li, B., Geng, P., Song, A.-X., Wu, J.-Y. 2017. Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac glucomannan) in water, Food Hydrocolloids. 70, 14-19.
[11] Muñoz-Almagro, N., Montilla, A., Moreno, F. J., Villamiel, M. 2017. Modification of citrus and apple pectin by power ultrasound: Effects of acid and enzymatic treatment, Ultrasonics Sonochemistry. 38, 807-819.
[12] Raoufi, N., Kadkhodaee, R., Fang, Y., Phillips, G. O. 2019. Ultrasonic degradation of Persian gum and gum tragacanth: Effect on chain conformation and molecular properties, Ultrasonics Sonochemistry. 52, 311-317.
[13] Farizadeh, S., Abbasi, H. 2023. Effect of ultrasonic waves on structural, functional and rheological properties of locust bean gum, Iranian Food Science and Technology Research Journal. 19, 365-381.
[14] Yang, Y., Chen, D., Yu, Y., Huang, X. 2020. Effect of ultrasonic treatment on rheological and emulsifying properties of sugar beet pectin, Food Science & Nutrition. 8, 4266-4275.
[15] Wei, Q., Lv, M., Wang, B., Sun, J., Wang, D. 2023. A comparative study of optimized conditions of QuEChERS to determine the pesticide multiresidues in Lycium barbarum using response surface methodology and genetic algorithm-artificial neural network, Journal of Food Composition and Analysis. 120, 105356.
[16] Lee, G. E., Kim, R. H., Lim, T., Kim, J., Kim, S., Kim, H.-G., Hwang, K. T. 2022. Optimization of accelerated solvent extraction of ellagitannins in black raspberry seeds using artificial neural network coupled with genetic algorithm, Food Chemistry. 396, 133712.
[17] Salehi, F. 2020. Recent advances in the modeling and predicting quality parameters of fruits and vegetables during postharvest storage: A review, International Journal of Fruit Science. 20, 506-520.
[18] Fadaie, M., Hosseini Ghaboos, S. H., Beheshti, B. 2020. Characterization of dried persimmon using infrared dryer and process modeling using genetic algorithm-artificial neural network method, Journal of Food Science and Technology (Iran). 17, 189-200.
[19] Koocheki, A., Hesarinejad, M. A., Mozafari, M. R. 2022. Lepidium perfoliatum seed gum: investigation of monosaccharide composition, antioxidant activity and rheological behavior in presence of salts, Chemical and Biological Technologies in Agriculture. 9, 61.
[20] Xuewu, Z., Xin, L., Dexiang, G., Wei, Z., Tong, X., Yonghong, M. 1996. Rheological models for xanthan gum, Journal of Food Engineering. 27, 203-209.
[21] Song, K.-W., Kim, Y.-S., Chang, G.-S. 2006. Rheology of concentrated xanthan gum solutions: Steady shear flow behavior, Fibers and Polymers. 7, 129-138.
[22] Salehi, F., Razavi Kamran, H., Goharpour, K. 2023. Production and evaluation of total phenolics, antioxidant activity, viscosity, color, and sensory attributes of quince tea infusion: Effects of drying method, sonication, and brewing process, Ultrasonics Sonochemistry. 99, 106591.
[23] Zheng, Z.-Y., Guo, X.-N., Zhu, K.-X., Peng, W., Zhou, H.-M. 2017. Artificial neural network – Genetic algorithm to optimize wheat germ fermentation condition: Application to the production of two anti-tumor benzoquinones, Food Chemistry. 227, 264-270.
[24] Satorabi, M., Salehi, F., Rasouli, M. 2021. The influence of xanthan and balangu seed gums coats on the kinetics of infrared drying of apricot slices: GA-ANN and ANFIS modeling, International Journal of Fruit Science. 21, 468-480.
[25] Oloruntoba, D., Ampofo, J., Ngadi, M. 2022. Effect of ultrasound pretreated hydrocolloid batters on quality attributes of fried chicken nuggets during post-fry holding, Ultrasonics Sonochemistry. 91, 106237.
[26] Ghorbani, M., Naghipour, L., Karimi, V., Farhoudi, R. 2013. Sensitivity analysis of the effective input parameters upon the ozone concentration using artificial neural networks, Iranian Journal of Health and Environment. 6, 11-22.