[1] Choden, D., & Dendup, W. (2023). Value addition to industrial food processing waste. In Value-addition in agri-food industry waste through enzyme technology. Kuddus, M., & Ramteke, P. (Eds.) United Kingdom: Academic Press. pp. 153-162.
[2] FAOSTAT. (2021). Food and Agriculture Organization of the United Nations/Statics. https://www.fao.org/faostat/en/#home.
[3] Kumar, K. (2020). Nutraceutical potential and utilization aspects of food industry by-products and wastes. In Food industry wastes: Assessment and recuperation of commodities. Kosseva, M. R., & Webb, C. (Eds.). Second edition. United Kingdom: Academic Press. pp. 89-111.
[4] Ahmed, N. (2023). Extraction of bioactive compounds from agro-industrial waste. In Extraction of natural products from agro-industrial wastes: A green and sustainable approach. Bhawani, S., Khan, A., & Ahmad, F. (Eds.). Amsterdam, Netherlands: Elsevier. pp. 131-142.
[5] Junaid, P. M., Dar, A. H., Dar, I. H., Khan, S. A., Manzoor, A., Ganaie, T. A., & Shams, R. (2023). Extraction of antioxidants from agro-industrial waste. In Extraction of natural products from agro-industrial wastes: A green and sustainable approach. Bhawani, S., Khan, A., & Ahmad, F. (Eds.). Amsterdam, Netherlands: Elsevier. pp. 143-156.
[6] González-Miquel, M., & Díaz, I. (2020). Valorization of citrus waste through sustainable extraction processes. In Food industry wastes: Assessment and recuperation of commodities. Kosseva, M. R., & Webb, C. (Eds.). Second edition. United Kingdom: Academic Press. pp. 113-133.
[7] Suri, S., Singh, A., & Nema, P. K. (2022). Current applications of citrus fruit processing waste: A scientific outlook. Applied Food Research, 2, 100050.
[8] Farag, M. A., Abib, B., Ayad, L., & Khattab, A. R. (2020). Sweet and bitter oranges: An updated comparative review of their bioactives, nutrition, food quality, therapeutic merits and biowaste valorization practices. Food Chemistry, 331, 127306.
[9] ISIRI. (July 2000). No. 177. Sour orange specification and test methods. Institute of Standards and Industrial Research of Iran. 1st revision.
[10] Chen, Y., Barzee, T. J., Zhang, R., & Pan, Z. (2019). Citrus. In Integrated processing technologies for food and agricultural by-products. Pan, Z., Zhang, R., & Zicari, S. (Eds.). United Kingdom: Academic Press. pp. 217-242.
[11] Mahato, N., Sharma, K., Sinha, M., & Cho, M. H. (2018). Citrus waste derived nutra-/pharmaceuticals for health benefits: Current trends and future perspectives. Journal of Functional Foods, 40, 307-316.
[12] El Kantar, S., Pasdar, N., Sharifi, A., Taherkhani, A., & Koubaa, M. (2023). Application of high-voltage electrical discharges for the extraction of valuable compounds from by-products of citrus and exotic fruits. In Processing of food products and wastes with high voltage electrical discharges. Vorobiev, E., Boussetta, N., & Lebovka, N. (Eds.). United Kingdom: Academic Press. pp. 153-172.
[13] Purkait, M. K., Haldar, D., & Duarah, P. (Eds.). (2023). Chapter 4. Advancement in bioactive compound extraction from natural products for pharmaceutical applications. Advances in Extraction and Applications of Bioactive Phytochemicals. United Kingdom: Academic Press. pp. 75-99.
[14] Hasnat, A., Moheman, A., Usmani, M. A., Ansari, A., Bhawani, S. A., Tariq, A., & Alotaibi, K. M. (2023). Solvent extraction of natural products. In Extraction of natural products from agro-industrial wastes: A green and sustainable approach. Bhawani, S., Khan, A., & Ahmad, F. (Eds.). Amsterdam, Netherlands: Elsevier. pp. 91-110.
[15] Sheikh, M. A., Anjum, N., Gull, A., Saini, C. S., & Sharma, H. K. (2023). Extraction of lycopene from agro-industrial waste. In Extraction of natural products from agro-industrial wastes: A green and sustainable approach. Bhawani, S., Khan, A., & Ahmad, F. (Eds.). Amsterdam, Netherlands: Elsevier. pp. 179-196.
[16] Fierascu, I., Avramescu, S. M., Sieniawska, E., & Fierascu, R. C. (2023). Ionic liquids with microwave-assisted extraction of natural products. In Extraction of natural products from agro-industrial wastes: A green and sustainable approach. Bhawani, S., Khan, A., & Ahmad, F. (Eds.). Amsterdam, Netherlands: Elsevier. pp. 35-52.
[17] Bansod, S. P., Parikh, J. K., & Sarangi, P. K. (2023). Pineapple peel waste valorization for extraction of bio-active compounds and protein: Microwave assisted method and Box Behnken design optimization. Environmental Research, 221, 115237.
[18] Sharma, M., & Dash, K. K. (2022). Microwave and ultrasound assisted extraction of phytocompounds from black jamun pulp: Kinetic and thermodynamics characteristics. Innovative Food Science & Emerging Technologies, 75, 102913.
[19] Mali, P. S., & Kumar, P. (2023). Simulation and experimentation on parameters influencing microwave-assisted extraction of bioactive compounds from Punica granatum waste and its preliminary analysis. Food Chemistry Advances, 3, 100344.
[20] Tomasi, I. T., Santos, S. C. R., Boaventura, R. A. R., & Botelho, C. M. S. (2023). Optimization of microwave-assisted extraction of phenolic compounds from chestnut processing waste using response surface methodology. Journal of Cleaner Production, 395, 136452.
[21] Ašperger, D., Gavranić, M., Prišlin, B., Rendulić, N., Šikuten, I., Marković, Z., Babić, B., Maletić, E., Karoglan- Kontić, J, Preiner, D., & Tomaz, I. (2022). Optimization of microwave-assisted extraction and matrix solid-phase dispersion for the extraction of polyphenolic compounds from grape skin. Separations, 9, 235.
[22] Kurtulbaş, E., Bilgin, M., & Şahin, S. (2021). Recovery of anthocyanins from sour cherry (Prunus cerasus L.) peels via microwave assisted extraction: Monitoring the storage stability. Preparative Biochemistry & Biotechnology, 51, 686-696.
[23] Baiano, A., Bevilacqua, L., Terracone, C., Contò, F., & Del Nobile, M. A. (2014). Single and interactive effects of process variables on microwave-assisted and conventional extractions of antioxidants from vegetable solid wastes. Journal of Food Engineering, 120, 135-145.
[24] Dahmoune, F., Boulekbache, L., Moussi, K., Aoun, O., Spigno, G., & Madani, K. (2013). Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Industrial Crops and Products, 50, 77-87.
[25] Hayat, K., Zhang, X., Chen, H., Xia, S., Jia, C., & Zhong, F. (2010). Liberation and separation of phenolic compounds from citrus mandarin peels by microwave heating and its effect on antioxidant activity. Separation and Purification Technology, 73, 371-376.
[26] AACC. (2000). American Association of Cereal Chemists. Approved Methods Committee.
[27] Habibi, M., Golmakani, M. -T., Mesbahi, G., Majzoobi, M., & Farahnaky, A. (2015). Ultrasound-accelerated debittering of olive fruits. Innovative Food Science & Emerging Technologies, 31, 105-115.
[28] Rekha, C., Poornima, G., Manasa, M., Abhipsa, V., Pavithra Devi, J., Vijay Kumar, H. T., & Prashith Kekuda, T. R. (2012). Ascorbic acid, total phenol content and antioxidant activity of fresh juices of four ripe and unripe citrus fruits. Chemical Science Transactions, 1, 303-310.
[29] Pascu, M., Pascu, D. E., Trăistaru, G. A., Nechifor, A. C., Bunaciu, A. A., & Aboul-Enein, H. Y. (2014). Different spectrophotometric methods for antioxidant activity assay of four Romanian herbs. Journal of the Iranian Chemical Society, 11, 315-321.
[30] Oyetayo, V., Dong, C. -H., & Yao, Y. -J. (2009). Antioxidant and antimicrobial properties of aqueous extract from Dictyophora indusiata. The Open Mycology Journal, 3, 20-26.
[31] Milutinović, M., Radovanović, N., Ćorović, M., Šiler-Marinković, S., Rajilić-Stojanović, M., & Dimitrijević-Branković, S. (2015). Optimisation of microwave-assisted extraction parameters for antioxidants from waste Achillea millefolium dust. Industrial Crops and Products, 77, 333-341.
[32] Prakash Maran, J., Sivakumar, V., Thirugnanasambandham, K., & Sridhar, R. (2014). Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohydrate Polymers, 101, 786-791.
[33] Mellinas, A. C., Jiménez, A., & Garrigós, M. C. (2020). Optimization of microwave-assisted extraction of cocoa bean shell waste and evaluation of its antioxidant, physicochemical and functional properties. LWT, 127, 109361.
[34] Elakremi, M., Sillero, L., Ayed, L., Ben Mosbah, M., Labidi, J., ben Salem, R., & Moussaoui, Y. (2022). Pistacia vera L. leaves as a renewable source of bioactive compounds via microwave assisted extraction. Sustainable Chemistry and Pharmacy, 29, 100815.
[35] Kaderides, K., Papaoikonomou, L., Serafim, M., & Goula, A. M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing - Process Intensification, 137, 1-11.
[36] Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94, 651-715.
[37] Moulehi, I., Bourgou, S., Ourghemmi, I., & Tounsi, M. S. (2012). Variety and ripening impact on phenolic composition and antioxidant activity of mandarin (Citrus reticulate Blanco) and bitter orange (Citrus aurantium L.) seeds extracts. Industrial Crops and Products, 39, 74-80.
[38] Singh, R., Singh, P., Pandey, V. K., Dash, K. K., Ashish, Mukarram, S. A., Harsányi, E., & Kovács, B. (2023). Microwave-Assisted Phytochemical Extraction from Walnut Hull and Process Optimization Using Box–Behnken Design (BBD). Processes, 11, 1243.
[39] Sánchez-Ayora, H., & Pérez-Jiménez, J. (2023). Antioxidant capacity of seaweeds: In vitro and in vivo assessment. In Marine Phenolic Compounds: Science and engineering. Pérez-Correa, J. R., Mateos, R., & Domínguez, H. (Eds.). Amsterdam, Netherlands: Elsevier. pp. 299-341.
[40] Valdés, A., Vidal, L., Beltrán, A., Canals, A., & Garrigós, M. C. (2015). Microwave-assisted extraction of phenolic compounds from almond skin byproducts (Prunus amygdalus): A multivariate analysis approach. Journal of Agricultural and Food Chemistry, 63, 5395-5402.
[41] Marchi, R. C., Campos, I. A., Santana, V. T., & Carlos, R. M. (2022). Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Coordination Chemistry Reviews, 451, 214275.