استخراج ترکیبات زیست‌فعال مغز دانه نارنج به کمک مایکروویو و تعیین ویژگی‌های پاداکسندگی آن‌ها

نویسندگان
1 دانشگاه شیراز
2 بخش علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه شیراز
چکیده
در مطالعه­ی حاضر، ترکیبات زیست­فعال از مغز دانه نارنج (Citrus aurantiumبه­عنوان یکی از پسماند­های فرآوری مرکبات با استفاده از روش مایکروویو استخراج شد. اثر چهار متغیر مستقل شامل توان مایکروویو (300- 100 وات)، زمان استخراج (15- 5 دقیقه)، وزن نمونه (15- 5 گرم) و حجم حلال (200- 100 میلی لیتر) بر پاسخ­های بازدهی استخراج، میزان فنل کل، میزان فلاونوئید کل، فعالیت مهار رادیکال آزاد (IC50)، قدرت احیای یون فریک، ظرفیت احیای یون مس و ظرفیت کلاته­کنندگی بررسی شد. روش سطح پاسخ مبتنی بر طرح مرکب مرکزی به­منظور بررسی اثر متغیرهای مستقل بر پاسخ­ها و هم­چنین به منظور بهینه­سازی شرایط استخراج استفاده شد. شرایط بهینه استخراج شامل توان مایکروویو ۳۰۰ وات، زمان استخراج ۱۵ دقیقه، وزن نمونه ۵ گرم و حجم حلال ۲۰۰ میلی لیتر بود. در خصوص بازدهی استخراج، با افزایش توان مایکروویو، زمان استخراج و وزن نمونه، میزان آن به­شکل معنی­داری افزایش یافت درحالی­که با افزایش حجم حلال، میزان آن به­شکل معنی­داری کاهش یافت. هم­چنین، بیشترین میزان فنل کل عصاره در کمترین سطوح توان مایکروویو و زمان استخراج مشاهده شد. در رابطه با میزان فلاونوئید کل عصاره، با افزایش زمان استخراج و افزایش حجم حلال، میزان آن به­شکل معنی­داری افزایش یافت درحالی­که با افزایش وزن نمونه، میزان آن به­شکل معنی­داری کاهش یافت. علاوه بر این، ظرفیت احیای یون مس عصاره با افزایش توان مایکروویو، زمان استخراج و حجم حلال، برخلاف وزن نمونه، به­شکل معنی­داری افزایش یافت. در مجموع، روش استخراج به کمک مایکروویو را می­توان به­عنوان روشی مناسب برای استخراج ترکیبات زیست­فعال از مغز دانه نارنج پیشنهاد داد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Microwave-assisted extraction of bioactive compounds from bitter orange seed cotyledon and evaluating their antioxidant properties

نویسندگان English

Mohammad-Taghi Golmakani 1
Azita Hosseinzadeh Farbudi 2
Gholamreza Mesbahi 2
Seyedeh Nasireh Alavi 1
1 Shiraz University
2 Department of Food Science and Technology, School of Agriculture, Shiraz University
چکیده English

In the present study, bioactive compounds were extracted from cotyledon of bitter orange (Citrus aurantium) seed, as a waste of citrus processing, using a microwave-assisted extraction method. The effects of four independent variables including microwave power (100-300 W), extraction time (5-15 min), sample weight (5-15 g), and solvent volume (100-200 mL) on responses of extraction yield, total phenolic content, total flavonoid content, free radical scavenging activity (IC50), ferric ion reducing antioxidant power (FRAP), cupric ion reducing antioxidant capacity (CUPRAC), and chelating capacity of extracts were investigated. Response surface methodology based on the central composite design was employed to investigate the effects of independent variables on the responses and also to optimize the extraction conditions. The optimum extraction condition included microwave power of 300 W, extraction time of 15 min, sample weight of 5 g, and solvent volume of 200 mL. Regarding the extraction yield, its amount increased significantly by increasing microwave power, extraction time, and sample weight, while it decreased significantly by increasing solvent volume. Also, the highest total phenolic content in the extract was observed at the lowest levels of microwave power and extraction time. Concerning the total flavonoid content in the extract, its amount increased significantly by increasing extraction time and solvent volume, while it decreased significantly by increasing sample weight. In addition, the CUPRAC of the extract increased significantly by increasing microwave power, extraction time, and solvent volume, as opposed to sample weight. In conclusion, microwave-assisted extraction can be suggested as a suitable method for extracting bioactive compounds from the bitter orange seed cotyledon.

کلیدواژه‌ها English

Extraction
Microwave
Bitter orange seed cotyledon
Citrus wastes
Antioxidant
[1] Choden, D., & Dendup, W. (2023). Value addition to industrial food processing waste. In Value-addition in agri-food industry waste through enzyme technology. Kuddus, M., & Ramteke, P. (Eds.) United Kingdom: Academic Press. pp. 153-162.
[2] FAOSTAT. (2021). Food and Agriculture Organization of the United Nations/Statics. https://www.fao.org/faostat/en/#home.
[3] Kumar, K. (2020). Nutraceutical potential and utilization aspects of food industry by-products and wastes. In Food industry wastes: Assessment and recuperation of commodities. Kosseva, M. R., & Webb, C. (Eds.). Second edition. United Kingdom: Academic Press. pp. 89-111.
[4] Ahmed, N. (2023). Extraction of bioactive compounds from agro-industrial waste. In Extraction of natural products from agro-industrial wastes: A green and sustainable approach. Bhawani, S., Khan, A., & Ahmad, F. (Eds.). Amsterdam, Netherlands: Elsevier. pp. 131-142.
[5] Junaid, P. M., Dar, A. H., Dar, I. H., Khan, S. A., Manzoor, A., Ganaie, T. A., & Shams, R. (2023). Extraction of antioxidants from agro-industrial waste. In Extraction of natural products from agro-industrial wastes: A green and sustainable approach. Bhawani, S., Khan, A., & Ahmad, F. (Eds.). Amsterdam, Netherlands: Elsevier. pp. 143-156.
[6] González-Miquel, M., & Díaz, I. (2020). Valorization of citrus waste through sustainable extraction processes. In Food industry wastes: Assessment and recuperation of commodities. Kosseva, M. R., & Webb, C. (Eds.). Second edition. United Kingdom: Academic Press. pp. 113-133.
[7] Suri, S., Singh, A., & Nema, P. K. (2022). Current applications of citrus fruit processing waste: A scientific outlook. Applied Food Research, 2, 100050.
[8] Farag, M. A., Abib, B., Ayad, L., & Khattab, A. R. (2020). Sweet and bitter oranges: An updated comparative review of their bioactives, nutrition, food quality, therapeutic merits and biowaste valorization practices. Food Chemistry, 331, 127306.
[9] ISIRI. (July 2000). No. 177. Sour orange specification and test methods. Institute of Standards and Industrial Research of Iran. 1st revision.
[10] Chen, Y., Barzee, T. J., Zhang, R., & Pan, Z. (2019). Citrus. In Integrated processing technologies for food and agricultural by-products. Pan, Z., Zhang, R., & Zicari, S. (Eds.). United Kingdom: Academic Press. pp. 217-242.
[11] Mahato, N., Sharma, K., Sinha, M., & Cho, M. H. (2018). Citrus waste derived nutra-/pharmaceuticals for health benefits: Current trends and future perspectives. Journal of Functional Foods, 40, 307-316.
[12] El Kantar, S., Pasdar, N., Sharifi, A., Taherkhani, A., & Koubaa, M. (2023). Application of high-voltage electrical discharges for the extraction of valuable compounds from by-products of citrus and exotic fruits. In Processing of food products and wastes with high voltage electrical discharges. Vorobiev, E., Boussetta, N., & Lebovka, N. (Eds.). United Kingdom: Academic Press. pp. 153-172.
[13] Purkait, M. K., Haldar, D., & Duarah, P. (Eds.). (2023). Chapter 4. Advancement in bioactive compound extraction from natural products for pharmaceutical applications. Advances in Extraction and Applications of Bioactive Phytochemicals. United Kingdom: Academic Press. pp. 75-99.
[14] Hasnat, A., Moheman, A., Usmani, M. A., Ansari, A., Bhawani, S. A., Tariq, A., & Alotaibi, K. M. (2023). Solvent extraction of natural products. In Extraction of natural products from agro-industrial wastes: A green and sustainable approach. Bhawani, S., Khan, A., & Ahmad, F. (Eds.). Amsterdam, Netherlands: Elsevier. pp. 91-110.
[15] Sheikh, M. A., Anjum, N., Gull, A., Saini, C. S., & Sharma, H. K. (2023). Extraction of lycopene from agro-industrial waste. In Extraction of natural products from agro-industrial wastes: A green and sustainable approach. Bhawani, S., Khan, A., & Ahmad, F. (Eds.). Amsterdam, Netherlands: Elsevier. pp. 179-196.
[16] Fierascu, I., Avramescu, S. M., Sieniawska, E., & Fierascu, R. C. (2023). Ionic liquids with microwave-assisted extraction of natural products. In Extraction of natural products from agro-industrial wastes: A green and sustainable approach. Bhawani, S., Khan, A., & Ahmad, F. (Eds.). Amsterdam, Netherlands: Elsevier. pp. 35-52.
[17] Bansod, S. P., Parikh, J. K., & Sarangi, P. K. (2023). Pineapple peel waste valorization for extraction of bio-active compounds and protein: Microwave assisted method and Box Behnken design optimization. Environmental Research, 221, 115237.
[18] Sharma, M., & Dash, K. K. (2022). Microwave and ultrasound assisted extraction of phytocompounds from black jamun pulp: Kinetic and thermodynamics characteristics. Innovative Food Science & Emerging Technologies, 75, 102913.
[19] Mali, P. S., & Kumar, P. (2023). Simulation and experimentation on parameters influencing microwave-assisted extraction of bioactive compounds from Punica granatum waste and its preliminary analysis. Food Chemistry Advances, 3, 100344.
[20] Tomasi, I. T., Santos, S. C. R., Boaventura, R. A. R., & Botelho, C. M. S. (2023). Optimization of microwave-assisted extraction of phenolic compounds from chestnut processing waste using response surface methodology. Journal of Cleaner Production, 395, 136452.
[21] Ašperger, D., Gavranić, M., Prišlin, B., Rendulić, N., Šikuten, I., Marković, Z., Babić, B., Maletić, E., Karoglan- Kontić, J, Preiner, D., & Tomaz, I. (2022). Optimization of microwave-assisted extraction and matrix solid-phase dispersion for the extraction of polyphenolic compounds from grape skin. Separations, 9, 235.
[22] Kurtulbaş, E., Bilgin, M., & Şahin, S. (2021). Recovery of anthocyanins from sour cherry (Prunus cerasus L.) peels via microwave assisted extraction: Monitoring the storage stability. Preparative Biochemistry & Biotechnology, 51, 686-696.
[23] Baiano, A., Bevilacqua, L., Terracone, C., Contò, F., & Del Nobile, M. A. (2014). Single and interactive effects of process variables on microwave-assisted and conventional extractions of antioxidants from vegetable solid wastes. Journal of Food Engineering, 120, 135-145.
[24] Dahmoune, F., Boulekbache, L., Moussi, K., Aoun, O., Spigno, G., & Madani, K. (2013). Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Industrial Crops and Products, 50, 77-87.
[25] Hayat, K., Zhang, X., Chen, H., Xia, S., Jia, C., & Zhong, F. (2010). Liberation and separation of phenolic compounds from citrus mandarin peels by microwave heating and its effect on antioxidant activity. Separation and Purification Technology, 73, 371-376.
[26] AACC. (2000). American Association of Cereal Chemists. Approved Methods Committee.
[27] Habibi, M., Golmakani, M. -T., Mesbahi, G., Majzoobi, M., & Farahnaky, A. (2015). Ultrasound-accelerated debittering of olive fruits. Innovative Food Science & Emerging Technologies, 31, 105-115.
[28] Rekha, C., Poornima, G., Manasa, M., Abhipsa, V., Pavithra Devi, J., Vijay Kumar, H. T., & Prashith Kekuda, T. R. (2012). Ascorbic acid, total phenol content and antioxidant activity of fresh juices of four ripe and unripe citrus fruits. Chemical Science Transactions, 1, 303-310.
[29] Pascu, M., Pascu, D. E., Trăistaru, G. A., Nechifor, A. C., Bunaciu, A. A., & Aboul-Enein, H. Y. (2014). Different spectrophotometric methods for antioxidant activity assay of four Romanian herbs. Journal of the Iranian Chemical Society, 11, 315-321.
[30] Oyetayo, V., Dong, C. -H., & Yao, Y. -J. (2009). Antioxidant and antimicrobial properties of aqueous extract from Dictyophora indusiata. The Open Mycology Journal, 3, 20-26.
[31] Milutinović, M., Radovanović, N., Ćorović, M., Šiler-Marinković, S., Rajilić-Stojanović, M., & Dimitrijević-Branković, S. (2015). Optimisation of microwave-assisted extraction parameters for antioxidants from waste Achillea millefolium dust. Industrial Crops and Products, 77, 333-341.
[32] Prakash Maran, J., Sivakumar, V., Thirugnanasambandham, K., & Sridhar, R. (2014). Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohydrate Polymers, 101, 786-791.
[33] Mellinas, A. C., Jiménez, A., & Garrigós, M. C. (2020). Optimization of microwave-assisted extraction of cocoa bean shell waste and evaluation of its antioxidant, physicochemical and functional properties. LWT, 127, 109361.
[34] Elakremi, M., Sillero, L., Ayed, L., Ben Mosbah, M., Labidi, J., ben Salem, R., & Moussaoui, Y. (2022). Pistacia vera L. leaves as a renewable source of bioactive compounds via microwave assisted extraction. Sustainable Chemistry and Pharmacy, 29, 100815.
[35] Kaderides, K., Papaoikonomou, L., Serafim, M., & Goula, A. M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chemical Engineering and Processing - Process Intensification, 137, 1-11.
[36] Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94, 651-715.
[37] Moulehi, I., Bourgou, S., Ourghemmi, I., & Tounsi, M. S. (2012). Variety and ripening impact on phenolic composition and antioxidant activity of mandarin (Citrus reticulate Blanco) and bitter orange (Citrus aurantium L.) seeds extracts. Industrial Crops and Products, 39, 74-80.
[38] Singh, R., Singh, P., Pandey, V. K., Dash, K. K., Ashish, Mukarram, S. A., Harsányi, E., & Kovács, B. (2023). Microwave-Assisted Phytochemical Extraction from Walnut Hull and Process Optimization Using Box–Behnken Design (BBD). Processes, 11, 1243.
[39] Sánchez-Ayora, H., & Pérez-Jiménez, J. (2023). Antioxidant capacity of seaweeds: In vitro and in vivo assessment. In Marine Phenolic Compounds: Science and engineering. Pérez-Correa, J. R., Mateos, R., & Domínguez, H. (Eds.). Amsterdam, Netherlands: Elsevier. pp. 299-341.
[40] Valdés, A., Vidal, L., Beltrán, A., Canals, A., & Garrigós, M. C. (2015). Microwave-assisted extraction of phenolic compounds from almond skin byproducts (Prunus amygdalus): A multivariate analysis approach. Journal of Agricultural and Food Chemistry, 63, 5395-5402.
[41] Marchi, R. C., Campos, I. A., Santana, V. T., & Carlos, R. M. (2022). Chemical implications and considerations on techniques used to assess the in vitro antioxidant activity of coordination compounds. Coordination Chemistry Reviews, 451, 214275.