فیلم زیست‌تخریب پذیر برپایه موسیلاژ گل پنیرک اصلاح شده با شیرین بیان و نانو ذرات سولفات مس بررسی خواص فیزیکوشیمیایی

نویسندگان
دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران
چکیده
هدف این پژوهش. تولید فیلم از موسیلاژ گل پنیرک اصلاح شده با شیرین‌بیان (0، 3، 6 %) (وزنی/ وزنی) و نانوذرات سولفات مس (0، 2، 4 %) (وزنی/ وزنی) بود. برای مطالعه خواص ضخامت، رطوبت، حلالیت، نفوذپذیری به بخار آب، رنگی و خواص مکانیکی فیلم‌ها مورد استفاده قرار گرفت. نتایج نشان می‌دهد که با افزایش شیرین‌بیان و نانوذرات سولفات مس، میزان ضخامت فیلم افزایش می‌یابد. رطوبت، نفوذپذیری بخار آب و حلالیت فیلم با افزایش نانوذرات سولفات مس کاهش و با افزایش شیرین‌بیان افزایش می‌یابد. همچنین با افزایش غلظت شیرین‌بیان، شاخص‌های رنگی a*، افزایش یافته و روشنایی لایه‌ها به‌طور معنی‌داری کاهش یافت. نتایج آزمایش مکانیکی نشان داد که با افزایش شیرین‌بیان و نانوذرات سولفات مس، مقاومت کششی کاهش و افزایش نانوذرات سولفات مس ازدیاد طول در نقطه شکست به طور چشمگیری افزایش یافت. نتیجه‌گیری نهایی: افزودن ریشه شیرین‌بیان و نانوذرات سولفات مس به فیلم‌های خوراکی بر پایه موسیلاژ گل پنیرک سبب بهبود ضخامت و ازدیاد طول در نقطه شکست فیلم‌ها، همچنین موجب تضعیف مقاومت کششی، رطوبت، نفوذپذیری به بخار آب و روشنایی گردید.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Biodegradable film based on the mucilage of Pansyrak flower modified with licorice and copper sulfate nanoparticles, investigation of physicochemical properties

نویسندگان English

akram khakpour
mahmud rezazadehbari
Sajad Pirsa
Fatemeh Khakpour
university
چکیده English

The aim of this research was to produce a film from the mucilage of Paneerak flower modified with Shirin-Bian and copper sulfate nanoparticles. It was used to study the properties of thickness, humidity, solubility, permeability to water vapor, color and mechanical properties of the films. The results show that with the increase of licorice and copper sulfate nanoparticles, the thickness of the film increases. Humidity, water vapor permeability and solubility of the film decrease with the increase of copper sulfate nanoparticles and increase with the increase of sodium chloride. Also, with an increase in the concentration of Shirin Bayan, the color indices a* increased and the brightness of the layers decreased significantly. The results of the mechanical test show that with the increase of sugar and copper sulfate nanoparticles, the tensile strength decreases and with the increase of copper sulfate nanoparticles, the elongation at the breaking point increases significantly.

کلیدواژه‌ها English

Edible film
Mucilage
sweets and copper sulfate nanoparticles
(1) Pirsa S, Mohtarami F, Kalantari S (2020) Preparation of biodegradable composite starch/tragacanth gum/nanoclay flm and study of its physicochemical and mechanical properties. Chem Rev Lett 3(3):98–103.
(2) Pirsa S, Asadzadeh F, Sani IK (2020) Synthesis of magnetic gluten/pectin/Fe3O4 nano-hydrogel and its use to reduce environmental pollutants from Lake Urmia sediments. J Inorg Organometall Polym Mater.
(3) Khodaei, S, M., Gholami-Ahangaran, M., Karimi Sani, I., Esfandiari, Z., & Eghbaljoo, H. (2023). Application of intelligent packaging for meat products: A systematic review. Veterinary Medicine and Science, 9(1), 481-493.

(4) Li YJ, Chen J, Li Y, Li Q, Zheng YF, Fu Y and Li P.(2011). Screeing and haracterization of natural antioxidants in four Glycyrrhiza species by liquid chromatography coupied with electrospary ionization quadrupole time of flight tanden mass spectrometry. J. Chromatogr A. 1218 (45):
(5) Kobaya shi M, Fujita K, Katakura T, Utsunomiya T, (2002). Pollard RB and Suzuki F. Inhibitory effect of glycyrrhizin on experimental pulmonary metastas: in mice inoculated with B16 melanoma. Anti Cancer Res. 22: 4053 - 8.
(6) Karimi Sani, I., Aminoleslami, L., Mirtalebi, S. S., Sani, M. A., Mansouri, E., Eghbaljoo, H., & Kazemzadeh, B. (2023).Cold plasma technology. Applications in improving edible films and food packaging. Food Packaging and Shelf Life, 37, 101087.
(7) S. Pirsa and S. Chavoshizadeh,(2018). Design of an optical sensor for ethylene based on nanofiber bacterial cellulose film and its application for determination of banana storage time, Polym Adv Technol 29 1385–1393.
(8) Hassani, D., Sani, I. K., & Pirsa, S. (2023). Nanocomposite Film of Potato Starch and Gum Arabic Containing Boron Oxide Nanoparticles and Anise Hyssop (Agastache foeniculum) Essential Oil: Investigation of Physicochemical and Antimicrobial Properties. Journal of Polymers and the Environment , 12-1
(9) Jiang, C. Li, X. Jiao, Y. Jiang, D. Zhang, L. Fan, B. and Zhang, Q. (2014). Optimization for ultrasound-assisted extraction of polysaccharides with antioxidant activity in vitro from the aerial root of Ficus microcarpa. Carbohydrate Polymers, 110, 10-17.
(10) Khakpour, F.; Pirsa, S.; Amiri, S. (2023). Modifed Starch/CrO/Lycopene/Gum Arabic Nanocomposite Film: Preparation, Investigation of Physicochemical Properties and Ability to Use as Nitrite Kit. Journal of Polymers and the Environment.
(11)Arjeh, E.; Barzegar, M.; Sahari, M. (2015).Effects of gamma irradiation on physicochemical properties, antioxidant and microbial activities of sour cherry juice. Radiation physics and chemistry 114: 18-24.
(12)Pires, A. F., Marnotes, N. G., Rubio, O. D., Garcia, A. C., & Pereira, C. D. (2021). Dairy by-products: A review on the valorization of whey and second cheese whey. Foods, 10(5), 1067.‏
(13) Davachi, Seyed Mohammad, & Shekarabi, Azadeh Sadat. (2018). Preparation and characterization of antibacterial, eco-friendly edible nanocomposite films containing Salvia macrosiphon and nanoclay. International journal of biological macromolecules, 113, 66-72. doi: 10.1016/j.ijbiomac.2018.02.106.
(14) Kavoosi, Gholamreza, Dadfar, Seyed Mohammad Mahdi, & Purfard, Amin Mohammadi. (2013). Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. Journal of Food Science.
(15) Gómez-Estaca, J., López de Lacey, A., López-Caballero, M.E., GómezGuillén, M.C. and Montero, P. 2010. Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiology, 27: 889–896.
(16)Averous L and Bquillon N, 2004. Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate polymers 56, 111-.222.
(17) Nafchi, A.M., A.K. Alias, S. Mahmud, and M. Robal. (2012). Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod- rich zinc oxide. J. Food Eng., 113(4), 511-519.
(18) Shen, X. L., Wu, J. M., Chen, Y., & Zhao, G. ( 2010). Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24( 4), 285-290 .
(19) Tang, C.H. and Jiang, Y. 2007. Modulation of mechanical and surface hydrophobic properties of food protein films by transglutaminase treatment. Food Research International, 40: 504- 509
(20) Thellen, C., C. Orroth, D. Froio, D. Ziegler, J. Lucciarini, R. Farrell, N.A. D’Souza, and J.A. Ratto. (2005). Influence of montmorillonite layered silicate on plasticized poly(l-lactide) blown films. Polym., 46(25), 11716-11727.
(21) MacDougall, D. B. (Ed.). (2002). Colour in food: improving quality. Woodhead Publ.
(22) D. Abedi, S. M. Mortazavi, M. Khajeh Mehrizi. (2008). Antimicrobial properties of acrylic fabrics dyed with direct dye and a copper salt. Text. Res. J. 78, 311-319.
(23) Srinivasan, M; Devipriya, N; Kalpana, K.B; and Menon, V.P.(2009). Lycopene: An antioxidant and radioprotector against radiation-induced cellular damaves in cultured human lymphocytes. Toxicol, 262: 43-49.
(24) Wetzel, B., Haupert, F. & Zhang, M.Q. (2003). Epoxy nanocomposites with high mechanical and tribological performance. Composites Science and Technology, 63(14), 2055-2067.
(25) Cao, X., Chen, Y., Chang, P.R., Muir, A.D. & Falk, G. (2008). Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polymer Letters, 2(7), 502-510.