تثبیت کووالانت بتا گالاکتوزیداز آسپرژیلوس اوریزه و پروتئاز باسیلوس لیکنی فورمیس بر آمینو- نانولوله های کربنی چند دیواره ای

نویسندگان
1 داﻧﺸﺠﻮی دکتری ﻋﻠﻮم و ﺻﻨﺎیﻊ غذایی، گروه ﻋﻠﻮم و مهندسی ﺻﻨﺎیﻊ غذایی، دانشکده کشاورزی ، دانشگاه اروﻣﯿﻪ، اروﻣﯿﻪ، ایﺮان.
2 اﺳﺘﺎد گروه ﻋﻠﻮم و مهندسی ﺻﻨﺎیﻊ غذایی ، دانشکده کشاورزی، دانشگاه اروﻣﯿﻪ، اروﻣﯿﻪ، ایﺮان
3 استاد گروه علوم و مهندسی صنایع غذایی، دانشکده فنی مهندسی، دانشگاه سیرت، ترکیه
چکیده
این مطالعه با هدف تثبیت کووالانت بتا گالاکتوزیداز آسپرژیلوس اوریزه و پروتئاز باسیلوس لیکنی فورمیس برروی آمینو- نانولوله­های کربنی چند دیواره­ای انجام شد. در این روش ازطرح 2k کسری برای مطالعه اثر هفت فاکتور پیوسته (pH فعال سازی، مولاریته گلوتارآلدئید، زمان فعال سازی، pHمحلول بافر، مولاریته محلول بافر، مقدار MWCNT-NH3-گلوتارآلدئید و زمان تثبیت) بر روی راندمان تثبیت و فعالیت آنزیمی استفاده شد. از نرم افزارDesign-expert برای آنالیز داده ها و رسم نمودار ها استفاده شد. نتایج نشان داد که فاکتور های مذکور میزان فعالیت آنزیمی پروتئاز باسیلوس لیکنی فورمیس و بتا گالاکتوزیداز آسپرژیلوس اوریزه به ترتیب با ضریب همبستگی 80/0 و 92/0 به میزان 77 و 88 درصد پیش بینی می کنند. همچنین ضریب همبستگی مدل راندمان تثبیت کووالانت بتا گالاکتوزیداز آسپرژیلوس اوریزه و پروتئاز باسیلوس لیکنی فورمیس برروی آمینو- نانولوله­های کربنی چند دیواره­ای به ترتیب 89/0 و 82/0 بدست آمد و فاکتورهای مورد مطالعه توانستند به ترتیب میزان راندمان تثبیت کووالانت بتا گالاکتوزیداز آسپرژیلوس اوریزه و پروتئاز باسیلوس لیکنی فورمیس برروی آمینو- نانولوله­های کربنی چند دیواره­ای به ترتیب 83 و 77 درصد پیش بینی کنند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Covalent immobilization of Aspergillus oryzae β-galactosidase and Bacillus licheniformis protease with Amino-Multi Walled Carbon Nanotubes

نویسندگان English

Alan Yaseen Taher 1
Mohammad Alizadeh Khaledabad 2
Yakup Aslan 3
1 Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
3 Siirt University Faculty of Engineering Department of Food Engineering
چکیده English

This study was carried out with the aim of covalent immobilization of Aspergillus oryzae beta-galactosidase and Bacillus licheniformis protease on multi-walled amino-carbon nanotubes. In this method, fractional 2k design was used to study the effect of seven continuous factors (activation pH, glutaraldehyde molarity, activation time, buffer solution pH, buffer solution molarity, MWCNT-NH3-glutaraldehyde amount and stabilization time) on the stabilization efficiency and enzyme activity. . Design-expert software was used to analyze data and draw graphs. The results showed that the aforementioned factors predict the level of enzyme activity of Bacillus licheniformis protease and Aspergillus oryzae beta-galactosidase with correlation coefficients of 0.80 and 0.92 at the rate of 77 and 88%, respectively. Also, the correlation coefficient of the covalent fixation efficiency model of Aspergillus oryzae beta-galactosidase and Bacillus licheniformis protease on multi-walled carbon nanotubes was 0.89 and 0.82, respectively, and the studied factors were able to determine the covalent fixation beta efficiency, respectively. Aspergillus oryzae galactosidase and Bacillus licheniformis protease on multi-walled amino-carbon nanotubes predict 83 and 77%, respectively.

کلیدواژه‌ها English

Alkaline Protease
Carbon nanotubes
covalent immobilization
β-galactosidase
1. Sass, A.-C. and H.-J. Jördening, Immobilization of β-galactosidase from Aspergillus oryzae on electrospun gelatin nanofiber mats for the production of galactooligosaccharides. Applied Biochemistry and Biotechnology, 2020. 191: p. 1155-1170.
2. Guerrero, C., et al., Improvements in the production of Aspergillus oryzae β-galactosidase crosslinked aggregates and their use in repeated-batch synthesis of lactulose. International journal of biological macromolecules, 2020. 142: p. 452-462.
3. Gao, X., J. Wu, and D. Wu, Rational design of the beta-galactosidase from Aspergillus oryzae to improve galactooligosaccharide production. Food chemistry, 2019. 286: p. 362-367.
4. Serey, M., C. Vera, C. Guerrero, and A. Illanes, Immobilization of Aspergillus oryzae β-galactosidase in cation functionalized agarose matrix and its application in the synthesis of lactulose. International journal of biological macromolecules, 2021. 167: p. 1564-1574.
5. Vera, C., et al., Conventional and non-conventional applications of β-galactosidases. Biochimica et Biophysica Acta (BBA)-proteins and proteomics, 2020. 1868(1): p. 140271.
6. Aslan, Y., D. Ömerosmanoğlu, and E.Ö. Koç, Covalent immobilization of an alkaline protease from Bacillus licheniformis. Turkish Journal of Biochemistry, 2018. 43(6): p. 595-604.
7. Wahba, M.I., Gum tragacanth for immobilization of Bacillus licheniformis protease: optimization, thermodynamics and application. Reactive and Functional Polymers, 2022. 179: p. 105366.
8. Kuribayashi, L.M., et al., Immobilization of β-galactosidase from Bacillus licheniformis for application in the dairy industry. Applied Microbiology and Biotechnology, 2021. 105: p. 3601-3610.
9. de Souza, T.C., et al., Modulation of lipase B from Candida antarctica properties via covalent immobilization on eco-friendly support for enzymatic kinetic resolution of rac-indanyl acetate. Bioprocess and biosystems engineering, 2020. 43: p. 2253-2268.
10. Basso, A. and S. Serban, Industrial applications of immobilized enzymes—A review. Molecular Catalysis, 2019. 479: p. 110607.
11. Glomm, W.R., et al., Immobilized protease on magnetic particles for enzymatic protein hydrolysis of poultry by-products. LWT, 2021. 152: p. 112327.
12. Ansari, S.A. and Q. Husain, Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology advances, 2012. 30(3): p. 512-523.
13. Verma, M.L., M. Naebe, C.J. Barrow, and M. Puri, Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PloS one, 2013. 8(9): p. e73642.
14. Çakmakçı, R., Screening of multi-trait rhizobacteria for improving the growth, enzyme activities, and nutrient uptake of tea (Camellia sinensis). Communications in Soil Science and Plant Analysis, 2016. 47(13-14): p. 1680-1690.
15. Carrara, C.R. and A.C. Rubiolo, Immobilization of. beta.-galactosidase on chitosan. Biotechnology Progress, 1994. 10(2): p. 220-224.
16. Macfarlane, G., C. Allison, and G. Gibson, Effect of pH on protease activities in the large intestine. Letters in applied microbiology, 1988. 7(6): p. 161-164.
17. Bhunia, B., et al., Effect of pH and temperature on stability and kinetics of novel extracellular serine alkaline protease (70 kDa). International journal of biological macromolecules, 2013. 54: p. 1-8.
18. Otte, J., et al., Protease-induced gelation of unheated and heated whey proteins: effects of pH, temperature, and concentrations of protein, enzyme and salts. International Dairy Journal, 1999. 9(11): p. 801-812.
19. Yang, L., et al., Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: Effect of pH adjustment. International Biodeterioration & Biodegradation, 2015. 105: p. 153-159.
20. da Silva, O.S., E.M. de Almeida, A.H.F. de Melo, and T.S. Porto, Purification and characterization of a novel extracellular serine-protease with collagenolytic activity from Aspergillus tamarii URM4634. International journal of biological macromolecules, 2018. 117: p. 1081-1088.
21. Jones, E.M., C.A. Cochrane, and S.L. Percival, The effect of pH on the extracellular matrix and biofilms. Advances in wound care, 2015. 4(7): p. 431-439.
22. López-Cervantes, J., D.I. Sánchez-Machado, R.G. Sánchez-Duarte, and M.A. Correa-Murrieta, Study of a fixed-bed column in the adsorption of an azo dye from an aqueous medium using a chitosan–glutaraldehyde biosorbent. Adsorption Science & Technology, 2018. 36(1-2): p. 215-232.
23. Rathinam, K., S.P. Singh, C.J. Arnusch, and R. Kasher, An environmentally-friendly chitosan-lysozyme biocomposite for the effective removal of dyes and heavy metals from aqueous solutions. Carbohydrate Polymers, 2018. 199: p. 506-515.
24. Rodrigues de Melo, R., et al., New heterofunctional supports based on glutaraldehyde-activation: A tool for enzyme immobilization at neutral pH. Molecules, 2017. 22(7): p. 1088.
25. Dal Magro, L., et al., Pectin lyase immobilization using the glutaraldehyde chemistry increases the enzyme operation range. Enzyme and Microbial Technology, 2020. 132: p. 109397.
26. de Andrades, D., et al., Immobilization and stabilization of different β-glucosidases using the glutaraldehyde chemistry: Optimal protocol depends on the enzyme. International journal of biological macromolecules, 2019. 129: p. 672-678.
27. Ibrahim, A.S.S., et al., Enhancement of alkaline protease activity and stability via covalent immobilization onto hollow core-mesoporous shell silica nanospheres. International journal of molecular sciences, 2016. 17(2): p. 184.
28. Duman, Y.A. and N. Tekin, Kinetic and thermodynamic properties of purified alkaline protease from Bacillus pumilus Y7 and non‐covalent immobilization to poly (vinylimidazole)/clay hydrogel. Engineering in Life Sciences, 2020. 20(1-2): p. 36-49.
29. Minteer, S.D., Enzyme stabilization and immobilization. 2017: Springer.
30. Rodrigues, R.C., et al., Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnology advances, 2021. 52: p. 107821.
31. Ahmed, F., S.M. Faisal, A. Ahmed, and Q. Husain, Beta galactosidase mediated bio-enzymatically synthesized nano-gold with aggrandized cytotoxic potential against pathogenic bacteria and cancer cells. Journal of Photochemistry and Photobiology B: Biology, 2020. 209: p. 111923.
32. Bashir, N., M. Sood, and J.D. Bandral, Enzyme immobilization and its applications in food processing: A review. Int. J. Chem. Stud, 2020. 8(2): p. 254-261.
33. Ait Braham, S., et al., Cooperativity of covalent attachment and ion exchange on alcalase immobilization using glutaraldehyde chemistry: Enzyme stabilization and improved proteolytic activity. Biotechnology progress, 2019. 35(2): p. e2768.
34. Zaak, H., et al., Improved stability of immobilized lipases via modification with polyethylenimine and glutaraldehyde. Enzyme and Microbial Technology, 2017. 106: p. 67-74.
35. Siar, E.-H., et al., Immobilization/stabilization of ficin extract on glutaraldehyde-activated agarose beads. Variables that control the final stability and activity in protein hydrolyses. Catalysts, 2018. 8(4): p. 149.
36. Zaak, H., M. Sassi, and R. Fernandez-Lafuente, A new heterofunctional amino-vinyl sulfone support to immobilize enzymes: Application to the stabilization of β-galactosidase from Aspergillus oryzae. Process Biochemistry, 2018. 64: p. 200-205.
37. Cardoso, B.B., et al., β-galactosidase from Aspergillus lacticoffeatus: A promising biocatalyst for the synthesis of novel prebiotics. International Journal of Food Microbiology, 2017. 257: p. 67-74.
38. Khan, M., Q. Husain, and R. Bushra, Immobilization of β-galactosidase on surface modified cobalt/multiwalled carbon nanotube nanocomposite improves enzyme stability and resistance to inhibitor. International journal of biological macromolecules, 2017. 105: p. 693-701.
39. Zaak, H., et al., Exploiting the versatility of aminated supports activated with glutaraldehyde to immobilize β-galactosidase from Aspergillus oryzae. Catalysts, 2017. 7(9): p. 250.
40. Ansari, S.A. and A.A. Damanhory, Biotechnological application of Aspergillus oryzae β-galactosidase immobilized on glutaraldehyde modified zinc oxide nanoparticles. Heliyon, 2023. 9(2).
41. de Freitas, L.A., et al., Magnetic CLEAs of β-galactosidase from Aspergillus oryzae as a potential biocatalyst to produce tagatose from lactose. Catalysts, 2023. 13(2): p. 306.