[1] Abdel-Shaheed, M. M., Abdalla, E. S., Khalil, A. F., & El-Hadidy, E. M. (2021). Effect of Egyptian Date Palm Pollen (Phoenix dactylifera L.) and Its Hydroethanolic Extracts on Serum Glucose and Lipid Profiles in Induced Diabetic Rats. Food and Nutrition Sciences, 12(2): 147.
[2] Pateiro, M., Gómez, B., Munekata, P. E., Barba, F. J., Putnik, P., Kovačević, D. B., & Lorenzo, J. M. (2021). Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules, 26(6): 1547.
[3] Safarzaei, A., Sarhadi, H., Khodaparast, M. H. H., Shahdadi, F., & Dashipour, A. R. (2020). Optimization of aqueous and alcoholic extraction of phenolic and antioxidant compounds from Caper (Capparis spinosa L.) Roots assisted by ultrasound waves. Zahedan Journal of Research in Medical Sciences, 22(4): e100747.
[4] Kenari, R. E., Amiri, Z. R., Motamedzadegan, A., Milani, J. M., Farmani, J., & Farahmandfar, R. (2020). Optimization of Iranian golpar (Heracleum persicum) extract encapsulation using sage (Salvia macrosiphon) seed gum: chitosan as a wall materials and its effect on the shelf life of soybean oil during storage. Journal of Food Measurement and Characterization, 14: 2828-2839.
[5] Tahir, A., Shabir Ahmad, R., Imran, M., Ahmad, M. H., Kamran Khan, M., Muhammad, N., ... & Javed, M. (2021). Recent approaches for utilization of food components as nano-encapsulation: a review. International Journal of Food Properties, 24(1): 1074-1096.
[6] Dehghan, B., Esmaeilzadeh Kenari, R., & Raftani Amiri, Z. (2020). Nano‐encapsulation of orange peel essential oil in native gums (Lepidium sativum and Lepidium perfoliatum): Improving oxidative stability of soybean oil. Journal of Food Processing and Preservation, 44(11): e14889.
[7] Tamjidi, F., Shahedi, M., Varshosaz, J., & Nasirpour, A. (2013). Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innovative Food Science and Emerging Technologies, 19: 29-43.
[8] Mohamed, S. A., El-Sakhawy, M., & El-Sakhawy, M. A. M. (2020). Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate Polymers, 238: 116178.
[9] Razavi, R., Kenari, R. E., Farmani, J., & Jahanshahi, M. (2020). Fabrication of zein/alginate delivery system for nanofood model based on pumpkin. International Journal of Biological Macromolecules, 165: 3123-3134.
[10] Khalid, S., Khalid, N., Khan, R. S., Ahmed, H., & Ahmad, A. (2017). A review on chemistry and pharmacology of Ajwa date fruit and pit. Trends in food science and technology, 63: 60-69.
[11] Al-Farsi, M. A., & Lee, C. Y. (2008). Nutritional and functional properties of dates: a review. Critical reviews in food science and nutrition, 48(10): 877-887.
[12] Amir, A., Ansari, I., Arif, F., Bano, S., Amir, F., Ahmad, U., & Raza, A. (2020). A review on phyto-pharmacological significance of ajwa pits (Phoenix dactylifera L.). BioScientific Review, 2(3): 26-45.
[13] Hussein, A. M., El-Mousalamy, A. M., Hussein, S. A., & Mahmoud, S. A. (2015). Effects of palm dates (Phoenix dactylifera L.) extracts on hepatic dysfunctions in Type 2 diabetic rat model. World J. Pharm. Pharm. Sci, 4: 62-79.
[14] Kalantaripour, T. P., Asadi-Shekaari, M., Basiri, M., & Najar, A. G. (2012). Cerebroprotective effect of date seed extract (Phoenix dactylifera) on focal cerebral ischemia in male rats. Journal of Biological Sciences, 12(3): 180-185.
[15] Al-Farsi, M. A., & Lee, C. Y. (2011). Usage of date (Phoenix dactylifera L.) seeds in human health and animal feed. In Nuts and seeds in health and disease prevention (pp. 447-452). Academic Press.
[16] Radfar, R., Farhoodi, M., Ghasemi, I., Khaneghah, A. M., Shahraz, F., & Hosseini, H. (2019). Assessment of phenolic contents and antioxidant and antibacterial activities of extracts from four varieties of Iranian date Palm (Phoenix dactylifera L.) seeds. Applied food biotechnology, 6(3): 173-184.
[17] Jivan, M. J., Yarmand, M., & Madadlou, A. (2014). Short communication Encapsulation of date palm pit extract via particulation of starch nanocrystals in a microemulsion. International Journal of Food Science and Technology, 49: 920-923.
[18] Sadeghi, S., Madadlou, A., & Yarmand, M. (2014). Microemulsification–cold gelation of whey proteins for nanoencapsulation of date palm pit extract. Food Hydrocolloids, 35: 590-596.
[19] Calliari, C. M., Campardelli, R., Pettinato, M., & Perego, P. (2020). Encapsulation of hibiscus sabdariffa extract into zein nanoparticles. Chemical Engineering and Technology, 43(10): 2062-2072.
[20] Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International journal of food science and technology, 45(7): 1386-1394.
[21] Esmaeilzadeh Kenari, R., & Razavi, R. (2022). Phenolic profile and antioxidant activity of free/bound phenolic compounds of sesame and properties of encapsulated nanoparticles in different wall materials. Food Science and Nutrition, 10(2): 525-535.
[22] Najafi, Z., Cetinkaya, T., Bildik, F., Altay, F., & Yeşilçubuk, N. Ş. (2022). Nanoencapsulation of saffron (Crocus sativus L.) extract in zein nanofibers and their application for the preservation of sea bass fillets. LWT, 163: 113588.
[23] Zheng, H., Wang, J., Zhang, Y., Xv, Q., Zeng, Q., & Wang, J. (2022). Preparation and characterization of carvacrol-loaded caseinate/zein-composite nanoparticles using the anti-solvent precipitation method. Nanomaterials, 12(13): 2189.
[24] Dehghanian, F., Kalantaripour, T. P., Esmaeilpour, K., Elyasi, L., Oloumi, H., Pour, F. M., & Asadi-Shekaari, M. (2017). Date seed extract ameliorates β-amyloid-induced impairments in hippocampus of male rats. Biomedicine and Pharmacotherapy, 89: 221-226.
[25] Al-Farsi, M., Alasalvar, C., Al-Abid, M., Al-Shoaily, K., Al-Amry, M., & Al-Rawahy, F. (2007). Compositional and functional characteristics of dates, syrups, and their by-products. Food chemistry, 104(3): 943-947.
[26] Fuad, F. M., & Nadzir, M. M. (2023). Ultrasound-assisted extraction of asiaticoside from Centella asiatica using betaine-based natural deep eutectic solvent. Industrial Crops and Products, 192: 116069.
[27] Zheng, B., Yuan, Y., Xiang, J., Jin, W., Johnson, J. B., Li, Z., ... & Luo, D. (2022). Green extraction of phenolic compounds from foxtail millet bran by ultrasonic-assisted deep eutectic solvent extraction: Optimization, comparison and bioactivities. Lwt, 154: 112740.
[28] Oroian, M., Ursachi, F., & Dranca, F. (2020). Influence of ultrasonic amplitude, temperature, time and solvent concentration on bioactive compounds extraction from propolis. Ultrasonics Sonochemistry, 64: 105021.
[29] Tsiaka, T., Lantzouraki, D. Z., Polychronaki, G., Sotiroudis, G., Kritsi, E., Sinanoglou, V. J., ... & Zoumpoulakis, P. (2023). Optimization of Ultrasound-and Microwave-Assisted Extraction for the Determination of Phenolic Compounds in Peach Byproducts Using Experimental Design and Liquid Chromatography–Tandem Mass Spectrometry. Molecules, 28(2): 518.
[30] Babiker, E. E., Atasoy, G., Özcan, M. M., Juhaimi, F. A., Ghafoor, K., Ahmed, I. A. M., & Almusallam, I. A. (2020). Bioactive compounds, minerals, fatty acids, color, and sensory profile of roasted date (Phoenix dactylifera L.) seed. Journal of food processing and preservation, 44(7): e14495.
[31] Afshari, K., Javanmard Dakheli, M., Ramezan, Y., Bassiri, A., & Ahmadi Chenarbon, H. (2023). Physicochemical and control releasing properties of date pit (Phoenix dactylifera L.) phenolic compounds microencapsulated through fluidized‐bed method. Food Science & Nutrition, 11(3): 1367-1382.
[32] Alem, C., Ennassir, J., Benlyas, M., Mbark, A. N., & Zegzouti, Y. F. (2017). Phytochemical compositions and antioxidant capacity of three date (Phoenix dactylifera L.) seeds varieties grown in the South East Morocco. Journal of the Saudi Society of Agricultural Sciences, 16(4): 350-357.
[33] Irawan, C., Sukiman, M., Putri, I. D., Utami, A., Dewanta, A., & Noviyanti, A. (2022). Optimization of the Ultrasound Assisted Extraction of Phaleria macrocarpa (Scheff.) Boerl. Fruit Peel and its Antioxidant and Anti-Gout Potential. Pharmacognosy Journal, 14(2): 397-405.
[34] Djaoudene, O., López, V., Cásedas, G., Les, F., Schisano, C., Bey, M. B., & Tenore, G. C. (2019). Phoenix dactylifera L. seeds: A by-product as a source of bioactive compounds with antioxidant and enzyme inhibitory properties. Food and function, 10(8): 4953-4965.
[35] Ghafoor, K., Sarker, M. Z. I., Al-Juhaimi, F. Y., Babiker, E. E., Alkaltham, M. S., & Almubarak, A. K. (2022). Extraction and evaluation of bioactive compounds from date (Phoenix dactylifera) seed using supercritical and subcritical CO2 techniques. Foods, 11(12): 1806.
[36] López de Dicastillo, C., Velásquez, E., Rojas, A., Garrido, L., Moreno, M. C., Guarda, A., & Galotto, M. J. (2023). Developing Core/Shell Capsules Based on Hydroxypropyl Methylcellulose and Gelatin through Electrodynamic Atomization for Betalain Encapsulation. Polymers, 15(2): 361.
[37] Sassi, C. B., Marcet, I., Rendueles, M., Díaz, M., & Fattouch, S. (2020). Egg yolk protein as a novel wall material used together with gum Arabic to encapsulate polyphenols extracted from Phoenix dactylifera L pits. LWT, 131: 109778.
[38] Liu, Y., Liang, Q., Liu, X., Raza, H., Ma, H., & Ren, X. (2022). Treatment with ultrasound improves the encapsulation efficiency of resveratrol in zein-gum Arabic complex coacervates. Lwt, 153: 112331.
[39] Inam, W., Bhadane, R., Akpolat, R. N., Taiseer, R. A., Filippov, S. K., Salo‐Ahen, O. M., ... & Zhang, H. (2022). Interactions between polymeric nanoparticles and different buffers as investigated by zeta potential measurements and molecular dynamics simulations. View, 3(4): 20210009.
[40] Campardelli, R., Oleandro, E., & Reverchon, E. (2016). Supercritical assisted injection in a liquid antisolvent for PLGA and PLA microparticle production. Powder Technology, 287: 12-19.
[41] Zou, T., Li, Z., Percival, S. S., Bonard, S., & Gu, L. (2012). Fabrication, characterization, and cytotoxicity evaluation of cranberry procyanidins-zein nanoparticles. Food hydrocolloids, 27(2): 293-300.
[42] Luque-Alcaraz, A. G., Velazquez-Antillón, M., Hernández-Téllez, C. N., Graciano-Verdugo, A. Z., García-Flores, N., Iriqui-Razcón, J. L., ... & Hernández-Abril, P. A. (2022). Antioxidant Effect of Nanoparticles Composed of Zein and Orange (Citrus sinensis) Extract Obtained by Ultrasound-Assisted Extraction. Materials, 15(14): 4838.
[43] Bannunah, A. M., Vllasaliu, D., Lord, J., and Stolnik, S. (2014). Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Molecular pharmaceutics, 11(12): 4363-4373.
[44] Brotons-Canto, A., Gonzalez-Navarro, C. J., Gurrea, J., González-Ferrero, C., and Irache, J. M. (2020). Zein nanoparticles improve the oral bioavailability of resveratrol in humans. Journal of Drug Delivery Science and Technology, 57: 101704.
[45] González-Cruz, E. M., Andrade González, I., Prieto, C., Lagarón, J. M., Calderón Santoyo, M., & Ragazzo Sánchez, J. A. (2022). Nanoencapsulation of Polyphenolic-Rich Extract from Biloxi Blueberries (Vaccinium Corymbosum L.) by Electrospraying using Zein as Encapsulating Material. Biointerface Research in Applied Chemistry, 13(1): 1-14.
[46] Bagheri, L., Madadlou, A., Yarmand, M., & Mousavi, M. E. (2013). Nanoencapsulation of date palm pit extract in whey protein particles generated via desolvation method. Food Research International, 51(2): 866-871.
[47] Zheng, H., Wang, J., You, F., Zhou, M., & Shi, S. (2022). Fabrication, Characterization, and Antimicrobial Activity of Carvacrol-Loaded Zein Nanoparticles Using the pH-Driven Method. International Journal of Molecular Sciences, 23(16): 9227.
[48] Zhang, S., & Han, Y. (2018). Preparation, characterisation and antioxidant activities of rutin-loaded zein-sodium caseinate nanoparticles. PloS one, 13(3): e0194951.
[49] Zhong, Q., & Jin, M. (2009). Zein nanoparticles produced by liquid–liquid dispersion. Food Hydrocolloids, 23(8): 2380-2387.