کاربرد روش رسوب ضدحلال در ریزپوشانی عصاره‌های هسته رقم خرمای ربی در بیوپلیمر پروتئینی زئین

نویسندگان
1 گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران
2 گروه انگل و قارچ شناسی، دانشگاه علوم پزشکی زاهدان، ایران
3 گروه فیزیولوژی، دانشگاه علوم پزشکی زاهدان، ایران
چکیده
هدف از این مطالعه، بررسی خصوصیات آنتی ­اکسیدانی عصاره­ های متانولی استخراجی از هسته رقم خرمای ربی به روش فراصوت و ارزیابی ویژگی­ های فیزیکوشیمیایی نانوذرات زئین بارگذاری شده با این عصاره ­ها بود. تیمار فراصوت جهت استخراج عصاره متانولی از پودر هسته خرما و روش رسوب ضدحلال جهت ریزپوشانی عصاره­ های متانولی هسته خرما به میزان 05/0، 1/0، 15/0 و 2/0 گرم در حامل بیوپلیمری زئین مورد استفاده قرار گرفت. در این مطالعه، میزان ترکیبات فنولی کل و IC50 عصاره­ های استخراجی از هسته خرمای رقم ربی در زمان 45 دقیقه، دمای50 درجه سانتیگراد حمام فراصوت و غلظت حلال متانول 70 درصد به ترتیب 74/369 میلی­ گرم اکی ­والان اسید گالیک بر گرم وزن خشک و 08/5 میکروگرم بر میلی­ لیتر بدست آمد. با افزایش نسبت عصاره ریزپوشانی شده در حامل زئین از 1/0 تا 4/0، میزان کارایی ریزپوشانی از 90/85 به 19/95درصد و اندازه ذرات زئین بارگذاری شده با عصاره­های متانولی از 95/129 به 30/183 نانومتر افزایش و میزان پتانسیل زتا نانوذرات از 15/19+ به 48/14+ میلی­ولت کاهش یافت. میزان اندازه و پتانسیل زتا ذرات زئین فاقد عصاره به ترتیب 30/109 نانومتر و 96/21+ میلی ­ولت تعیین گردید. نتایج آنالیز ATR-FTIR بیانگر آن بود که با افزایش نسبت عصاره متانولی ریزپوشانی شده در حامل زئین، پیک کشش پیوند O‒HO از 85/3292 به 85/3294 cm-1 تغییر و افزایش یافته است. در بررسی تصاویر FE-SEM، نانوذرات زئین فاقد عصاره و بارگذاری شده با عصاره ­های هسته خرما دارای مرفولوژی نیمه کروی بودند. به طور کلی، ماهیت آبگریز حامل زئین باعث اتصال آن با ترکیبات فنولی عصاره هسته خرمای ربی از طریق ایجاد اینتراکشن­های غیرکوالانس، واندروالس، هیدروژنی و هیدروفوب گردیده است. از این رو، زئین می­ تواند به عنوان یک حامل قدرتمند در ریزپوشانی عصاره­ های هسته خرما مورد استفاده قرار گیرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Application of antisolvent precipitation method for encapsulation of date seed extracts of Rabbi variety in zein ptotein biopolymer

نویسندگان English

Abdolvahed Safarzaei 1
Reza Esmaeilzadeh kenari 1
Reza Farahmandfar 1
Ahmad Mehravaran 2
Hamed Fanaei 3
1 Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Iran
2 Department of Parasitology and Mycology, School of Medicine, Zahedan University of Medical Sciences, Iran
3 Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Iran
چکیده English

The aim of this study was to investigate the antioxidant properties of date seed methanolic extracts of Rabbi variety and evaluating the physicochemical properties of zein nanoparticles loaded with these extracts. Ultrasonic treatment was used to extract methanolic extract from date seed powder and antisolvent precipitation method was used to encapsulate date seed methanolic extracts in amounts of 0.05, 0.1, 0.15 and 0.2 g in zein biopolymer carrier. In this study, the total phenolic content (TPC) and half maximal inhibitory concentration (IC50) value of date seed extracts of Rabbi variety in 45 min, the temperature of 500C of ultrasonic bath and 70% methanol solvent concentration were obtained respectively 369.47 mg gallic acid equivalents (GAE)/g dry weight and 5.08 µg/m1. By increasing the ratio of encapsulated extract in zein carrier from 0.1 to 0.4, the encapsulation efficiency from 85.90 to 95.19% and the size of zein particles loaded with methanolic extracts from 129.95 to 183.30 nm increased and the zeta potential of nanoparticles decreased from +19.15 to +14.48 mV. The size and zeta potential of extract-free zein particles were determined 109.30 nm and +21.96 mV, respectively. The results of ATR-FTIR analysis indicated that with increase the ratio of methanolic extract encapsulated in the zein carrier, the stretching peak of O‒HO bond changed and increased from 3292.85 to 3294.85 cm-1. In Investigating the FE-SEM images, extract-free zein nanoparticles and zein nanoparticles loaded with date seed extracts had semi-spherical morphology. Overall, the hydrophobic nature of zein carrier caused it to bind with the phenolics of Rabbi date seed extract through non-covalent, van der Waals, hydrogen, and hydrophobic interactions. Therefore, it can be used as a strong carrier for the encapsulation of date seed extracts.


کلیدواژه‌ها English

Ultrasound
Rabbi date seed
Zein carrier
Nanoencapsulation
Antisolvent precipitation
[1] Abdel-Shaheed, M. M., Abdalla, E. S., Khalil, A. F., & El-Hadidy, E. M. (2021). Effect of Egyptian Date Palm Pollen (Phoenix dactylifera L.) and Its Hydroethanolic Extracts on Serum Glucose and Lipid Profiles in Induced Diabetic Rats. Food and Nutrition Sciences, 12(2): 147.
[2] Pateiro, M., Gómez, B., Munekata, P. E., Barba, F. J., Putnik, P., Kovačević, D. B., & Lorenzo, J. M. (2021). Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules, 26(6): 1547.
[3] Safarzaei, A., Sarhadi, H., Khodaparast, M. H. H., Shahdadi, F., & Dashipour, A. R. (2020). Optimization of aqueous and alcoholic extraction of phenolic and antioxidant compounds from Caper (Capparis spinosa L.) Roots assisted by ultrasound waves. Zahedan Journal of Research in Medical Sciences, 22(4): e100747.
[4] Kenari, R. E., Amiri, Z. R., Motamedzadegan, A., Milani, J. M., Farmani, J., & Farahmandfar, R. (2020). Optimization of Iranian golpar (Heracleum persicum) extract encapsulation using sage (Salvia macrosiphon) seed gum: chitosan as a wall materials and its effect on the shelf life of soybean oil during storage. Journal of Food Measurement and Characterization, 14: 2828-2839.
[5] Tahir, A., Shabir Ahmad, R., Imran, M., Ahmad, M. H., Kamran Khan, M., Muhammad, N., ... & Javed, M. (2021). Recent approaches for utilization of food components as nano-encapsulation: a review. International Journal of Food Properties, 24(1): 1074-1096.
[6] Dehghan, B., Esmaeilzadeh Kenari, R., & Raftani Amiri, Z. (2020). Nano‐encapsulation of orange peel essential oil in native gums (Lepidium sativum and Lepidium perfoliatum): Improving oxidative stability of soybean oil. Journal of Food Processing and Preservation, 44(11): e14889.
[7] Tamjidi, F., Shahedi, M., Varshosaz, J., & Nasirpour, A. (2013). Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innovative Food Science and Emerging Technologies, 19: 29-43.
[8] Mohamed, S. A., El-Sakhawy, M., & El-Sakhawy, M. A. M. (2020). Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate Polymers, 238: 116178.
[9] Razavi, R., Kenari, R. E., Farmani, J., & Jahanshahi, M. (2020). Fabrication of zein/alginate delivery system for nanofood model based on pumpkin. International Journal of Biological Macromolecules, 165: 3123-3134.
[10] Khalid, S., Khalid, N., Khan, R. S., Ahmed, H., & Ahmad, A. (2017). A review on chemistry and pharmacology of Ajwa date fruit and pit. Trends in food science and technology, 63: 60-69.
[11] Al-Farsi, M. A., & Lee, C. Y. (2008). Nutritional and functional properties of dates: a review. Critical reviews in food science and nutrition, 48(10): 877-887.
[12] Amir, A., Ansari, I., Arif, F., Bano, S., Amir, F., Ahmad, U., & Raza, A. (2020). A review on phyto-pharmacological significance of ajwa pits (Phoenix dactylifera L.). BioScientific Review, 2(3): 26-45.
[13] Hussein, A. M., El-Mousalamy, A. M., Hussein, S. A., & Mahmoud, S. A. (2015). Effects of palm dates (Phoenix dactylifera L.) extracts on hepatic dysfunctions in Type 2 diabetic rat model. World J. Pharm. Pharm. Sci, 4: 62-79.
[14] Kalantaripour, T. P., Asadi-Shekaari, M., Basiri, M., & Najar, A. G. (2012). Cerebroprotective effect of date seed extract (Phoenix dactylifera) on focal cerebral ischemia in male rats. Journal of Biological Sciences, 12(3): 180-185.
[15] Al-Farsi, M. A., & Lee, C. Y. (2011). Usage of date (Phoenix dactylifera L.) seeds in human health and animal feed. In Nuts and seeds in health and disease prevention (pp. 447-452). Academic Press.
[16] Radfar, R., Farhoodi, M., Ghasemi, I., Khaneghah, A. M., Shahraz, F., & Hosseini, H. (2019). Assessment of phenolic contents and antioxidant and antibacterial activities of extracts from four varieties of Iranian date Palm (Phoenix dactylifera L.) seeds. Applied food biotechnology, 6(3): 173-184.
[17] Jivan, M. J., Yarmand, M., & Madadlou, A. (2014). Short communication Encapsulation of date palm pit extract via particulation of starch nanocrystals in a microemulsion. International Journal of Food Science and Technology, 49: 920-923.
[18] Sadeghi, S., Madadlou, A., & Yarmand, M. (2014). Microemulsification–cold gelation of whey proteins for nanoencapsulation of date palm pit extract. Food Hydrocolloids, 35: 590-596.
[19] Calliari, C. M., Campardelli, R., Pettinato, M., & Perego, P. (2020). Encapsulation of hibiscus sabdariffa extract into zein nanoparticles. Chemical Engineering and Technology, 43(10): 2062-2072.
[20] Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., & Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International journal of food science and technology, 45(7): 1386-1394.
[21] Esmaeilzadeh Kenari, R., & Razavi, R. (2022). Phenolic profile and antioxidant activity of free/bound phenolic compounds of sesame and properties of encapsulated nanoparticles in different wall materials. Food Science and Nutrition, 10(2): 525-535.
[22] Najafi, Z., Cetinkaya, T., Bildik, F., Altay, F., & Yeşilçubuk, N. Ş. (2022). Nanoencapsulation of saffron (Crocus sativus L.) extract in zein nanofibers and their application for the preservation of sea bass fillets. LWT, 163: 113588.
[23] Zheng, H., Wang, J., Zhang, Y., Xv, Q., Zeng, Q., & Wang, J. (2022). Preparation and characterization of carvacrol-loaded caseinate/zein-composite nanoparticles using the anti-solvent precipitation method. Nanomaterials, 12(13): 2189.
[24] Dehghanian, F., Kalantaripour, T. P., Esmaeilpour, K., Elyasi, L., Oloumi, H., Pour, F. M., & Asadi-Shekaari, M. (2017). Date seed extract ameliorates β-amyloid-induced impairments in hippocampus of male rats. Biomedicine and Pharmacotherapy, 89: 221-226.
[25] Al-Farsi, M., Alasalvar, C., Al-Abid, M., Al-Shoaily, K., Al-Amry, M., & Al-Rawahy, F. (2007). Compositional and functional characteristics of dates, syrups, and their by-products. Food chemistry, 104(3): 943-947.
[26] Fuad, F. M., & Nadzir, M. M. (2023). Ultrasound-assisted extraction of asiaticoside from Centella asiatica using betaine-based natural deep eutectic solvent. Industrial Crops and Products, 192: 116069.
[27] Zheng, B., Yuan, Y., Xiang, J., Jin, W., Johnson, J. B., Li, Z., ... & Luo, D. (2022). Green extraction of phenolic compounds from foxtail millet bran by ultrasonic-assisted deep eutectic solvent extraction: Optimization, comparison and bioactivities. Lwt, 154: 112740.
[28] Oroian, M., Ursachi, F., & Dranca, F. (2020). Influence of ultrasonic amplitude, temperature, time and solvent concentration on bioactive compounds extraction from propolis. Ultrasonics Sonochemistry, 64: 105021.
[29] Tsiaka, T., Lantzouraki, D. Z., Polychronaki, G., Sotiroudis, G., Kritsi, E., Sinanoglou, V. J., ... & Zoumpoulakis, P. (2023). Optimization of Ultrasound-and Microwave-Assisted Extraction for the Determination of Phenolic Compounds in Peach Byproducts Using Experimental Design and Liquid Chromatography–Tandem Mass Spectrometry. Molecules, 28(2): 518.
[30] Babiker, E. E., Atasoy, G., Özcan, M. M., Juhaimi, F. A., Ghafoor, K., Ahmed, I. A. M., & Almusallam, I. A. (2020). Bioactive compounds, minerals, fatty acids, color, and sensory profile of roasted date (Phoenix dactylifera L.) seed. Journal of food processing and preservation, 44(7): e14495.
[31] Afshari, K., Javanmard Dakheli, M., Ramezan, Y., Bassiri, A., & Ahmadi Chenarbon, H. (2023). Physicochemical and control releasing properties of date pit (Phoenix dactylifera L.) phenolic compounds microencapsulated through fluidized‐bed method. Food Science & Nutrition, 11(3): 1367-1382.
[32] Alem, C., Ennassir, J., Benlyas, M., Mbark, A. N., & Zegzouti, Y. F. (2017). Phytochemical compositions and antioxidant capacity of three date (Phoenix dactylifera L.) seeds varieties grown in the South East Morocco. Journal of the Saudi Society of Agricultural Sciences, 16(4): 350-357.
[33] Irawan, C., Sukiman, M., Putri, I. D., Utami, A., Dewanta, A., & Noviyanti, A. (2022). Optimization of the Ultrasound Assisted Extraction of Phaleria macrocarpa (Scheff.) Boerl. Fruit Peel and its Antioxidant and Anti-Gout Potential. Pharmacognosy Journal, 14(2): 397-405.
[34] Djaoudene, O., López, V., Cásedas, G., Les, F., Schisano, C., Bey, M. B., & Tenore, G. C. (2019). Phoenix dactylifera L. seeds: A by-product as a source of bioactive compounds with antioxidant and enzyme inhibitory properties. Food and function, 10(8): 4953-4965.
[35] Ghafoor, K., Sarker, M. Z. I., Al-Juhaimi, F. Y., Babiker, E. E., Alkaltham, M. S., & Almubarak, A. K. (2022). Extraction and evaluation of bioactive compounds from date (Phoenix dactylifera) seed using supercritical and subcritical CO2 techniques. Foods, 11(12): 1806.
[36] López de Dicastillo, C., Velásquez, E., Rojas, A., Garrido, L., Moreno, M. C., Guarda, A., & Galotto, M. J. (2023). Developing Core/Shell Capsules Based on Hydroxypropyl Methylcellulose and Gelatin through Electrodynamic Atomization for Betalain Encapsulation. Polymers, 15(2): 361.
[37] Sassi, C. B., Marcet, I., Rendueles, M., Díaz, M., & Fattouch, S. (2020). Egg yolk protein as a novel wall material used together with gum Arabic to encapsulate polyphenols extracted from Phoenix dactylifera L pits. LWT, 131: 109778.
[38] Liu, Y., Liang, Q., Liu, X., Raza, H., Ma, H., & Ren, X. (2022). Treatment with ultrasound improves the encapsulation efficiency of resveratrol in zein-gum Arabic complex coacervates. Lwt, 153: 112331.
[39] Inam, W., Bhadane, R., Akpolat, R. N., Taiseer, R. A., Filippov, S. K., Salo‐Ahen, O. M., ... & Zhang, H. (2022). Interactions between polymeric nanoparticles and different buffers as investigated by zeta potential measurements and molecular dynamics simulations. View, 3(4): 20210009.
[40] Campardelli, R., Oleandro, E., & Reverchon, E. (2016). Supercritical assisted injection in a liquid antisolvent for PLGA and PLA microparticle production. Powder Technology, 287: 12-19.
[41] Zou, T., Li, Z., Percival, S. S., Bonard, S., & Gu, L. (2012). Fabrication, characterization, and cytotoxicity evaluation of cranberry procyanidins-zein nanoparticles. Food hydrocolloids, 27(2): 293-300.
[42] Luque-Alcaraz, A. G., Velazquez-Antillón, M., Hernández-Téllez, C. N., Graciano-Verdugo, A. Z., García-Flores, N., Iriqui-Razcón, J. L., ... & Hernández-Abril, P. A. (2022). Antioxidant Effect of Nanoparticles Composed of Zein and Orange (Citrus sinensis) Extract Obtained by Ultrasound-Assisted Extraction. Materials, 15(14): 4838.
[43] Bannunah, A. M., Vllasaliu, D., Lord, J., and Stolnik, S. (2014). Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Molecular pharmaceutics, 11(12): 4363-4373.
[44] Brotons-Canto, A., Gonzalez-Navarro, C. J., Gurrea, J., González-Ferrero, C., and Irache, J. M. (2020). Zein nanoparticles improve the oral bioavailability of resveratrol in humans. Journal of Drug Delivery Science and Technology, 57: 101704.
[45] González-Cruz, E. M., Andrade González, I., Prieto, C., Lagarón, J. M., Calderón Santoyo, M., & Ragazzo Sánchez, J. A. (2022). Nanoencapsulation of Polyphenolic-Rich Extract from Biloxi Blueberries (Vaccinium Corymbosum L.) by Electrospraying using Zein as Encapsulating Material. Biointerface Research in Applied Chemistry, 13(1): 1-14.
[46] Bagheri, L., Madadlou, A., Yarmand, M., & Mousavi, M. E. (2013). Nanoencapsulation of date palm pit extract in whey protein particles generated via desolvation method. Food Research International, 51(2): 866-871.
[47] Zheng, H., Wang, J., You, F., Zhou, M., & Shi, S. (2022). Fabrication, Characterization, and Antimicrobial Activity of Carvacrol-Loaded Zein Nanoparticles Using the pH-Driven Method. International Journal of Molecular Sciences, 23(16): 9227.
[48] Zhang, S., & Han, Y. (2018). Preparation, characterisation and antioxidant activities of rutin-loaded zein-sodium caseinate nanoparticles. PloS one, 13(3): e0194951.
[49] Zhong, Q., & Jin, M. (2009). Zein nanoparticles produced by liquid–liquid dispersion. Food Hydrocolloids, 23(8): 2380-2387.