استفاده از پیش‌تیمار مایکروویو برای افزایش سرعت انتقال جرم در طول فرآیند خشک‌کردن برش‌های هویج

نویسندگان
1 دانشیار، گروه علوم و صنایع غذایی، دانشگاه بوعلی سینا، همدان
2 دانشجوی کارشناسی ارشد، گروه علوم و صنایع غذایی، دانشگاه بوعلی سینا، همدان
چکیده
فرآیند خشک‌کردن یکی از روش‌های فرآوری سبزی‌ها و میوه‌ها است که باعث کاهش حجم محصول، تسهیل در حمل‌ونقل، افزایش قابلیت نگهداری و کاهش فعالیت‌های میکروبی می‌گردد. امواج مایکروویو به‌عنوان یک منبع گرمایش سریع و مؤثر با اثرات حرارتی و غیرحرارتی می‌تواند مستقیماً بر مواد غذایی تأثیر بگذارند و در نتیجه واکنش‌های فیزیکوشیمیایی و سرعت خشک شدن را تسریع و محصولات خشک‌شده با کیفیت بالا تولید کنند. هدف از این پژوهش استفاده از پیش‌تیمار مایکروویو برای افزایش سرعت انتقال جرم در طول فرآیند خشک‌کردن برش‌های هویج و مدل‌سازی فرآیند به روش الگوریتم ژنتیک- شبکه عصبی مصنوعی است. در این مطالعه اثرات زمان تیماردهی با امواج مایکروویو در پنج سطح 0، 15، 30، 45 و 60 ثانیه بر زمان خشک شدن و محتوای رطوبت برش‌های هویج در سه تکرار مورد بررسی قرار گرفت. این فرآیند به روش الگوریتم ژنتیک- شبکه عصبی مصنوعی با 2 ورودی (زمان تیماردهی با مایکروویو و طول فرآیند خشک‌کردن) و 1 خروجی (درصد رطوبت) مدل‌سازی شد. نتایج نشان داد که با افزایش زمان تیماردهی با مایکروویو، سرعت خروج رطوبت از نمونه‌ها افزایش و در نتیجه زمان خشک‌کردن کاهش یافت. الگوریتم‌های آموزشی مختلف مورد ارزیابی قرار گرفت و الگوریتم لونبرگ-مارکوارت به‌عنوان بهترین الگوریتم انتخاب شد. بر اساس تحلیل‌های صورت گرفته روی داده‌های مدل‌سازی، شبکه عصبی مصنوعی پرسپترون با ساختار 1-5-2 مناسب‌ترین شبکه برای پیش‌بینی محتوای رطوبت برش‌های هویج تیمار شده با امواج مایکروویو است. در این مطالعه مقادیر میانگین مربعات خطا (MSE)، میانگین مربعات خطا نرمالیزه شده (NMSE)، میانگین خطا مطلق (MAE) و ضریب تبیین (r) برای پیش‌بینی درصد رطوبت برش‌های هویج طی فرآیند خشک شدن به ترتیب برابر 298/5، 006/0، 620/1 و 997/0 بود. نتایج آنالیز حساسیت توسط شبکه عصبی بهینه نشان داد که طول فرآیند خشک‌کردن به‌عنوان مؤثرترین عامل در پیش‌بینی محتوای رطوبت برش‌های هویج بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Application of microwave pretreatment to increase mass transfer rate during carrot slices drying process

نویسندگان English

Fakhreddin Salehi 1
Kimia Goharpour 2
Helia Razavi Kamran 2
1 Associate Professor, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
2 MSc Student, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
چکیده English

The drying process is one of the methods of processing vegetables and fruits, helping to reduce the volume of the product, facilitate transportation, increase preservation ability, and reduce microbial activities. As a fast and effective heat source with thermal and non-thermal effects, microwaves can directly affect food and thus accelerate physicochemical reactions and drying rates, and produce high quality dried products. The purpose of this research is to use microwave pretreatment to increase the mass transfer rate in the drying process of carrot slices and to model the process using the genetic algorithm-artificial neural network method. In this study, the effects of microwave treatment time at five levels of 0, 15, 30, 45, and 60 seconds on the drying time and moisture content of carrot slices were investigated in three replications. This process was modeled using the genetic algorithm-artificial neural network method with 2 inputs (microwave processing time and drying process duration) and 1 output (moisture percentage). The results showed that by increasing the microwave treatment time, the rate of moisture removal from the samples increased and thus the drying time decreased. Different training algorithms were evaluated and the Levenberg–Marquardt algorithm was chosen as the best algorithm. Based on modeling data analysis, the Perceptron artificial neural network with 2-5-1 structure is the most suitable network to predict the moisture content of microwaves-treated carrot slices. In this study, the values of mean squared error (MSE), normalized mean squared error (NMSE), mean absolute error (MAE), and correlation coefficient (r) for predicting the moisture content of carrot slices during drying process were equal to 5.298, 0.006, 1.650, and 0.997, respectively. The results of the optimal neural network sensitivity analysis showed that the drying process duration was the most effective factor in predicting the moisture content of carrot slices.

کلیدواژه‌ها English

Genetic algorithm-artificial neural network
Levenberg–Marquardt
Microwave
Perceptron
Sensitivity Analysis
[1] Salehi, F. 2023. Recent progress and application of freeze dryers for agricultural product drying, ChemBioEng Reviews.
[2] Kumar, C., Karim, M. A. 2019. Microwave-convective drying of food materials: A critical review, Critical Reviews in Food Science and Nutrition. 59, 379-394.
[3] Zhang, M., Tang, J., Mujumdar, A. S., Wang, S. 2006. Trends in microwave-related drying of fruits and vegetables, Trends in Food Science & Technology. 17, 524-534.
[4] Wray, D., Ramaswamy, H. S. 2015. Novel concepts in microwave drying of foods, Drying Technology. 33, 769-783.
[5] Motevali, A., Hedayati, F. 2017. Investigation of change Drying Rate Constant coefficient in simulations models with various pretreatments on drying apple, Innovative Food Technologies. 4, 39-51.
[6] Motevali, A., Minaei, S., Khoshtagaza, M. H. 2011. Evaluation of energy consumption in different drying methods, Energy Conversion and Management. 52, 1192-1199.
[7] Sharma, G. P., Prasad, S. 2006. Optimization of process parameters for microwave drying of garlic cloves, Journal of Food Engineering. 75, 441-446.
[8] Azadbakht, M., Vahedi Torshizi, M., Mahmoodi, M. J., Ghazagh Jahed, R. 2021. Mathematical modeling of the biochemical properties of carrots by microwave drying with different pretreatments using response surface methodology, Food Engineering Research. 21, 35-56.
[9] Karimi, S., Mohammadi, S., Layeghiniya, N., Abbasi, H. 2021. Effect of combined microwave-hot air under microwave pretreatment on drying kinetics of Myrtus fruit, Journal of Food Processing and Preservation. 13, 125-138.
[10] Simsek, M., Süfer, Ö. 2021. Influence of different pretreatments on hot air and microwave-hot air combined drying of white sweet cherry, Turkish Journal of Agriculture-Food Science and Technology. 9, 1172-1179.
[11] Tepe, F. B. 2022. Impact of pretreatments and hybrid microwave assisting on drying characteristics and bioactive properties of apple slices, Journal of Food Processing and Preservation. 46, e17067.
[12] Aydar, A. Y. 2020. Investigation of ultrasound pretreatment time and microwave power level on drying and rehydration kinetics of green olives, Food science and technology. In press.
[13] Najib, T., Heydari, M. M., Meda, V. 2022. Combination of germination and innovative microwave-assisted infrared drying of lentils: effect of physicochemical properties of different varieties on water uptake, germination, and drying kinetics, Applied Food Research. 2, 100040.
[14] Bassey, E. J., Cheng, J.-H., Sun, D.-W. 2022. Thermoultrasound and microwave-assisted freeze-thaw pretreatments for improving infrared drying and quality characteristics of red dragon fruit slices, Ultrasonics Sonochemistry. 91, 106225.
[15] Mousavikia, N., Mohammadi, F., Hasheminejad, H. 2022. Prediction and optimization of ultrasound-assisted removal of estrogen hormones from municipal wastewater using artificial neural network and genetic algorithm: a review approach, Health System Research. 18, 83-94.
[16] Salehi, F. 2020. Recent advances in the modeling and predicting quality parameters of fruits and vegetables during postharvest storage: A review, International Journal of Fruit Science. 20, 506-520.
[17] Satorabi, M., Salehi, F., Rasouli, M. 2021. The influence of xanthan and balangu seed gums coats on the kinetics of infrared drying of apricot slices: GA-ANN and ANFIS modeling, International Journal of Fruit Science. 21, 468-480.
[18] Parvaresh Rizi, A., Kouchakzadeh, S., Omid, M. H. 2006. Estimating moving hydraulic jump parameters by means of ANN and the integration of ANN and GA, Iranian Journal of Agricultural Sciences. 37, 187-196.
[19] Wei, Q., Lv, M., Wang, B., Sun, J., Wang, D. 2023. A comparative study of optimized conditions of QuEChERS to determine the pesticide multiresidues in Lycium barbarum using response surface methodology and genetic algorithm-artificial neural network, Journal of Food Composition and Analysis. 120, 105356.
[20] Lee, G. E., Kim, R. H., Lim, T., Kim, J., Kim, S., Kim, H.-G., Hwang, K. T. 2022. Optimization of accelerated solvent extraction of ellagitannins in black raspberry seeds using artificial neural network coupled with genetic algorithm, Food Chemistry. 396, 133712.
[21] Fadaie, M., Hosseini Ghaboos, S. H., Beheshti, B. 2020. Characterization of dried persimmon using infrared dryer and process modeling using genetic algorithm-artificial neural network method, Journal of Food Science and Technology (Iran). 17, 189-200.
[22] Huang, D., Men, K., Tang, X., Li, W., Sherif, S. 2021. Microwave intermittent drying characteristics of camellia oleifera seeds, Journal of Food Process Engineering. 44, e13608.
[23] Zheng, Z.-Y., Guo, X.-N., Zhu, K.-X., Peng, W., Zhou, H.-M. 2017. Artificial neural network – Genetic algorithm to optimize wheat germ fermentation condition: Application to the production of two anti-tumor benzoquinones, Food Chemistry. 227, 264-270.
[24] Jin, L., Kuang, X., Huang, H., Qin, Z., Wang, Y. 2005. Study on the overfitting of the artificial neural network forecasting model, Acta Meteorologica Sinica. 19, 216-225.