[1] Ghanbarzadeh, B, Almasi, H. & Zahedi, Y. 2009. Biodegradable edible biopolymers in food and drug packaging. Tehran, Amir Kabir University of technology publication, 526 pages (In Persian).
[2] Khazaei, N., Esmaiili, M., Djomeh, Z. E., Ghasemlou, M., & Jouki, M. 2014. Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydrate polymers, 102: 199-206.
[3] Maqsood, H., Uroos, M., Muazzam, R., Naz, S., & Muhammad, N. 2020. Extraction of basil seed mucilage using ionic liquid and preparation of AuNps/mucilage nanocomposite for catalytic degradation of dye. International Journal of Biological Macromolecules, 164: 1847-1857.
[4] Allafchian, A., Jalali, S. A. H., Hosseini, F., & Massoud, M. 2017. Ocimum basilicum mucilage as a new green polymer support for silver in magnetic nanocomposites: production and characterization. Journal of environmental chemical engineering, 5(6): 5912-5920.
[5] Zahedi, Y. 2019. Edible/Biodegradable Films and Coatings from Natural Hydrocolloids (chapter 23), In: Emerging Natural Hydrocolloids: Rheology and Functions, First Edition. Ed. by S. M.A. Razavi., John Wiley & Sons Ltd.
[6] Hashemi, S. M. B., Khaneghah, A. M., Ghahfarrokhi, M. G., & Eş, I. 2017. Basil-seed gum containing Origanum vulgare subsp. viride essential oil as edible coating for fresh cut apricots. Postharvest Biology and Technology, 125: 26-34.
[7] Azzaoui, K., Mejdoubi, E., Lamhamdi, A., Jodeh, S., Hamed, O., Berrabah, M. & Zougagh, M. 2017. Preparation and characterization of biodegradable nanocomposites derived from carboxymethyl cellulose and hydroxyapatite. Carbohydrate polymers, 167: 59-69.
[8] Torabi, A., Mohebbi, M., Tabatabaei-Yazdi, F., Shahidi, F., Khalilian-Movahhed, M. & Zahedi Y. 2020. Application of different carbohydrates to produce squash puree based edible sheet. Journal of Food Science and Technology, 57(2):673-682.
[9] Oun, A. A., & Rhim, J. W. 2015. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydrate polymers, 127: 101-109.
[10] Abulyazied, D. E., & Ene, A. 2021. An investigative study on the progress of nanoclay-reinforced polymers: Preparation, properties, and applications: A review. Polymers, 13(24): 4401-4409.
[11] Oliver-Ortega, H., Tresserras, J., Julian, F., Alcalà, M., Bala, A., Espinach, F. X., & Méndez, J. A. 2021a. Nanocomposites materials of PLA Reinforced with nanoclays using a masterbatch technology: A study of the mechanical performance and its sustainability. Polymers, 13(13): 2133-2140.
[12] Oliver-Ortega, H., Vandemoortele, V., Bala, A., Julian, F., Méndez, J. A., & Espinach, F. X. 2021b. Nanoclay effect into the biodegradation and processability of poly (lactic acid) nanocomposites for food packaging. Polymers, 13(16), 2741-2749.
[13] Almasi, H., Ghanbarzadeh, B., & Entezami, A. A. 2010. Physicochemical properties of starch–CMC–nanoclay biodegradable films. International journal of biological macromolecules, 46(1): 1-5.
[14] Shin, S. H., Kim, S. J., Lee, S. H., Park, K. M., & Han, J. 2014. Apple peel and carboxymethylcellulose‐based nanocomposite films containing different nanoclays. Journal of food science, 79(3): E342-E353.
[15] Razavi, S. M., Mortazavi, S. A., Matia‐Merino, L., Hosseini‐Parvar, S. H., Motamedzadegan, A., & Khanipour, E. 2009. Optimisation study of gum extraction from Basil seeds (Ocimum basilicum L.). International journal of food Science & Technology, 44(9): 1755-1762.
[16] Zahedi, Y., Fathi-Achachlouei, B., & Yousefi, A. R. 2018. Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites. International journal of biological macromolecules, 108: 863-873.
[17] Khazaei, N., Esmaiili, M., & Emam‐Djomeh, Z. 2017. Application of active edible coatings made from basil seed gum and thymol for quality maintenance of shrimp during cold storage. Journal of the Science of Food and Agriculture, 97(6): 1837-1845.
[18] Lin, L., Peng, S., Shi, C., Li, C., Hua, Z., & Cui, H. 2022. Preparation and characterization of cassava starch/sodium carboxymethyl cellulose edible film incorporating apple polyphenols. International Journal of Biological Macromolecules, 212: 155-164.
[19] Hashemi-Gahruie, H., Eskandari, M. H., Van der Meeren, P., & Hosseini, S. M. H. 2019. Study on hydrophobic modification of basil seed gum-based (BSG) films by octenyl succinate anhydride (OSA). Carbohydrate polymers, 219: 155-161.
[20] Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. 2010. Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative food science & emerging technologies, 11(4): 697-702.
[21] Rezaie, A., Rezaei, M., & Alboofetileh, M. 2021. Preparation of biodegradable carboxymethyl cellulose-Arabic gum composite film and evaluation of its physical, mechanical and thermal properties. Iranian Food Science and Technology Research Journal, 17(2): 287-297 (In Persian).
[22] Tongdeesoontorn, W., Mauer, L. J., Wongruong, S., & Rachtanapun, P. 2009. Water vapour permeability and sorption isotherms of cassava starch based films blended with gelatin and carboxymethyl cellulose. Asian Journal of Food and Agro-Industry, 2(4): 501-514.
[23] Ballesteros, L. F., Cerqueira, M. A., Teixeira, J. A., & Mussatto, S. I. 2018. Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides. International journal of biological macromolecules, 106: 647-655.
[24] Hazirah, M. N., Isa, M. I. N., & Sarbon, N. M. 2016. Effect of xanthan gum on the physical and mechanical properties of gelatin-carboxymethyl cellulose film blends. Food Packaging and Shelf Life, 9:55-63.
[25] Wang, R., Li, X., Ren, Z., Xie, S., Wu, Y., Chen, W. & Liu, X. 2020. Characterization and antibacterial properties of biodegradable films based on CMC, mucilage from Dioscorea opposita Thunb. and Ag nanoparticles. International Journal of Biological Macromolecules, 163: 2189-2198.
[26] Fathi-Achachlouei, B. & Zahedi, Y. 2018. Fabrication and evaluation of properties of carboxymethyl cellulose-based hybrid nanocomposites reinforced with titanium dioxide and montmorillonite. Food Science and Technology. 15(81): 35-47 (In Persian).
[27] Gutiérrez, M. Q., Echeverría, I., Ihl, M., Bifani, V., & Mauri, A. N. 2012. Carboxymethylcellulose–montmorillonite nanocomposite films activated with murta (Ugni molinae Turcz) leaves extract. Carbohydrate polymers, 87(2): 1495-1502.
[28] Ghanbarzadeh, B., Almasi, H., & Oleyaei, S. A. 2014. A novel modified starch/carboxymethyl cellulose/montmorillonite bionanocomposite film: structural and physical properties. International Journal of Food Engineering, 10(1): 121-130.
[29] Taghizadeh, M. T., Sabouri, N., & Ghanbarzadeh, B. 2013. Polyvinyl alcohol: starch: carboxymethyl cellulose containing sodium montmorillonite clay blends; mechanical properties and biodegradation behavior. SpringerPlus, 2(1): 1-8.
[30] Moghimi, R., Aliahmadi, A., & Rafati, H. 2017. Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging. Carbohydrate polymers, 175: 241-248.
[32] Ma, X., Chang, P. R., & Yu, J. (2008). Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers, 72(3), 369-375.
[31] Donhowe, I. G., & Fennema, O. (1993). The effects of solution composition and drying temperature on crystallinity, permeability and mechanical properties of methylcellulose films. Journal of Food Processing and Preservation, 17(4), 231-246.
[32] Ma, X., Chang, P. R., & Yu, J. 2008. Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers, 72(3): 369-375.
[33] Slavutsky A. M., María A. Bertuzzi, Margarita A., María G., Nelio A. 2014. Preparation and characterization of montmorillonite/brea gum nanocomposites films. Food Hydrocolloids, 35: 27-278.
[34] Rohini, B., Padma Ishwarya, S., Ram, R. & Arun Kuma, V. 2020. Ocimum basilicum seed mucilage reinforced with montmorillonite for preparation of bionanocomposite film for food packaging applications. Polymer Testing, 87: 48-55.
[35] Kang, J., Cui, S. W., Chen, J., Phillips, G. O., Wu, Y., & Wang, Q. 2011. New studies on gum ghatti (Anogeissus latifolia) part I. Fractionation, chemical and physical characterization of the gum. Food hydrocolloids, 25(8): 1984-1990.
[36] Thessrimuang, N., & Prachayawarakorn, J. 2019. Development, modification and characterization of new biodegradable film from basil seed (Ocimum basilicum L.) mucilage. Journal of the Science of Food and Agriculture, 99(12): 5508-5515.
[37] Tantiwatcharothai, S., & Prachayawarakorn, J. 2019. Characterization of an antibacterial wound dressing from basil seed (Ocimum basilicum L.) mucilage-ZnO nanocomposite. International journal of biological macromolecules, 135: 133-140.
[38] Azwa, Z.N., Yousif, A. C., & Karunasena M. W. 2013. A review on the degradability of polymeric composites based on natural fibre. Materials & Design, 47: 424-442.
[39] De Dicastillo, C. L., Bustos, F., Guarda, A., & Galotto, M. J. 2016. Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocolloids, 60: 335-344.
[40] Haque M. M. & Alsareii S. A. 2015. A review of the therapeutic effects of using miswak (Salvadora Persica) on oral health. Saudi medical journal, 36 (5): 530-543.
[41] Ma, C. C. M., Chen, Y. J., & Kuan, H. C. 2006. Polystyrene nanocomposite materials preparation, mechanical, electrical and thermal properties, and morphology. Journal of applied polymer science,
100(1): 508-515.
[42] Mohanty, S., & Nayak, S. K. 2007. Melt blended polystyrene/layered silicate nanocomposites: effect of clay modification on the mechanical, thermal, morphological and viscoelastic behavior. Journal of Thermoplastic Composite Materials, 20(2): 175-193.
[43] Pandey, J. K., Reddy, K. R., Kumar, A. P., & Singh, R. P. 2005. An overview on the degradability of polymer nanocomposites. Polymer degradation and stability, 88(2), 234-250
[44] Lee, J. Y., Liao, Y., Nagahata, R., & Horiuchi, S. 2006. Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process. Polymer, 47(23): 7970-7979.
[45] Zanetti, M., & Costa, L. 2004. Preparation and combustion behaviour of polymer/layered silicate nanocomposites based upon PE and EVA. Polymer, 45(13): 4367-4373.
[46] Vaziri, H. S., Omaraei, I. A., Abadyan, M., Mortezaei, M., & Yousefi, N. 2011. Thermophysical and rheological behavior of polystyrene/silica nanocomposites: Investigation of nanoparticle content. Materials & Design, 32(8-9): 4537-4542.