تاثیر افزودن کربوکسی‌متیل‌سلولز و مونت‌موریلونیت بر خواص فیزیکی-شیمیایی و حرارتی فیلم زیست‌تخریب‌پذیر موسیلاژ دانه ریحان

نویسندگان
1 دانش‌آموخته کارشناسی ارشد علوم و مهندسی صنایع غذایی، دانشگاه محقق اردبیلی، اردبیل، ایران
2 دانشیار گروه علوم و مهندسی صنایع غذایی، دانشگاه محقق اردبیلی، اردبیل، ایران.
چکیده
هدف از این مطالعه بهینه­ سازی و بهبود خواص بیوپلیمر بر پایه موسیلاژ دانه ریحان و کربوکسی­متیل سلولز (100، 5/162 و 225 درصد وزنی موسیلاژ) با استفاده از نانو رس (صفر و 8 درصد وزنی موسیلاژ) و با بهره­گیری از روش تولید قالب­گیری بود. پس از تهیه ضخامت، رطوبت، دانسیته، خواص مکانیکی، طیف‌سنجی مادون قرمز تبدیل فوریه (FTIR) و وزن سنجی حرارتی (TGA) در فیلم­ها اندازه‌‌گیری شد. نتایج نشان داد که ضخامت و دانسیته فیلم خالص BSM بصورت معنی داری تحت تاثیر اضافه شدن CMC و MMT قرار نگرفتند (05/0<p) ولی مقدار رطوبت با افزایش غلظت CMC روند کاهشی به خود گرفت (05/0>p) در حالیکه حضور MMT روی این پارامتر بی تاثیر بود. استفاده از CMC و MMT باعث افزایش مقاومت به کشش نهایی و همچنین ازدیاد طول تا نقطه پارگی نانوکامپوزیتها شد بگونه­ای که بیشترین مقاومت کششی و ازدیاد طول در نقطه پارگی به ترتیب به میزان 9/27 MPa و 41 % برای نانوکامپوزیت حاوی 8% MMT و 225% CMC حاصل شد. نتایج FTIR حاکی از این بود که فعل و انفعالات شیمیایی خاصی که منجر به تولید ترکیبات جدید شود اتفاق نیفتاده است و فقط شدت و ضعف پیک­های جذبی تا حدی تغییر کرده و در مواردی نیز طول­مو­ج­های پیک­های جذبی بصورت جزئی تغییرمکان داده­اند. نتایج TGA نشان داد افزودنCMC و MMT سب بهبود مقاومت حرارتی فیلمها می شود. در مجموع، نتایج اندازه­گیری­ها حاکی از تاثیر مثبت CMC و MMT روی فیلم BSM بود و تیمار حاوی MMT و بیشینه غلظت CMC را می­توان به عنوان فیلمی با ویژگیهای بهتر برای استفاده در بسته بندی توصیه نمود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of carboxymethyl cellulose and montmorillonite addition on the physicochemical and thermal properties of basil seed mucilage-based biodegradable film

نویسندگان English

Marzieh Qomi Marzdashti 1
Younes Zahedi 2
1 Department of Food Science & Technology, University of Mohaghegh Ardabili, Ardabil
2 Associate professor, Department of Food Science & Technology, University of Mohaghegh Ardabili, Ardabil, Iran.
چکیده English

The aim of this study was optimization and improvement of the physic-chemical characteristics films based on basil seed mucilage (BSM) and carboxymethyl cellulose (CMC) (100, 162.5 and 225% w/w the mucilage) using montmorillonite (MMT) (0 and 8% w/w the mucilage) by casting method. The produced films properties were evaluated for thickness, moisture content, density, mechanical properties, Fourier Transform Infrared Spectrometer (FTIR), and thermogravimetric analysis (TGA). Results indicated that thickness and density of the films were not significantly influenced by CMC and MMT addition (p>0.05), but the moisture content of nanocomposites decreased with increasing CMC content (p<0.05). Presence of CMC and MMT in the film matrix caused to enhancement of ultimate tensile strength (UTS) and elongation at break (EB) in nanocomposites; the maximum of UTS and EB with the values of 27.9 MPa and 41%, respectively, were obtained for the nanocomposite made by 225% CMC and 8% MMT. FTIR spectra revealed no new compounds resultant from the chemical interactions, and only some shifts were observed for some peaks, and also slightly weakening or intensifying in several peaks. TGA plots showed that incorporation of CMC and MMT led to improvement of thermal properties. In conclusion, simultaneous loading of nanoclay and CMC generated the improved nanocomposites, and the treatment loaded with both MMT and the maximum level of CMC (T7) is advised as the best film for employing in the food packaging.

کلیدواژه‌ها English

Nanocomposite
biodegradability
Food packaging
[1] Ghanbarzadeh, B, Almasi, H. & Zahedi, Y. 2009. Biodegradable edible biopolymers in food and drug packaging. Tehran, Amir Kabir University of technology publication, 526 pages (In Persian).
[2] Khazaei, N., Esmaiili, M., Djomeh, Z. E., Ghasemlou, M., & Jouki, M. 2014. Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydrate polymers, 102: 199-206.
[3] Maqsood, H., Uroos, M., Muazzam, R., Naz, S., & Muhammad, N. 2020. Extraction of basil seed mucilage using ionic liquid and preparation of AuNps/mucilage nanocomposite for catalytic degradation of dye. International Journal of Biological Macromolecules, 164: 1847-1857.
[4] Allafchian, A., Jalali, S. A. H., Hosseini, F., & Massoud, M. 2017. Ocimum basilicum mucilage as a new green polymer support for silver in magnetic nanocomposites: production and characterization. Journal of environmental chemical engineering, 5(6): 5912-5920.
[5] Zahedi, Y. 2019. Edible/Biodegradable Films and Coatings from Natural Hydrocolloids (chapter 23), In: Emerging Natural Hydrocolloids: Rheology and Functions, First Edition. Ed. by S. M.A. Razavi., John Wiley & Sons Ltd.
[6] Hashemi, S. M. B., Khaneghah, A. M., Ghahfarrokhi, M. G., & Eş, I. 2017. Basil-seed gum containing Origanum vulgare subsp. viride essential oil as edible coating for fresh cut apricots. Postharvest Biology and Technology, 125: 26-34.
[7] Azzaoui, K., Mejdoubi, E., Lamhamdi, A., Jodeh, S., Hamed, O., Berrabah, M. & Zougagh, M. 2017. Preparation and characterization of biodegradable nanocomposites derived from carboxymethyl cellulose and hydroxyapatite. Carbohydrate polymers, 167: 59-69.
[8] Torabi, A., Mohebbi, M., Tabatabaei-Yazdi, F., Shahidi, F., Khalilian-Movahhed, M. & Zahedi Y. 2020. Application of different carbohydrates to produce squash puree based edible sheet. Journal of Food Science and Technology, 57(2):673-682.
[9] Oun, A. A., & Rhim, J. W. 2015. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydrate polymers, 127: 101-109.
[10] Abulyazied, D. E., & Ene, A. 2021. An investigative study on the progress of nanoclay-reinforced polymers: Preparation, properties, and applications: A review. Polymers, 13(24): 4401-4409.
[11] Oliver-Ortega, H., Tresserras, J., Julian, F., Alcalà, M., Bala, A., Espinach, F. X., & Méndez, J. A. 2021a. Nanocomposites materials of PLA Reinforced with nanoclays using a masterbatch technology: A study of the mechanical performance and its sustainability. Polymers, 13(13): 2133-2140.
[12] Oliver-Ortega, H., Vandemoortele, V., Bala, A., Julian, F., Méndez, J. A., & Espinach, F. X. 2021b. Nanoclay effect into the biodegradation and processability of poly (lactic acid) nanocomposites for food packaging. Polymers, 13(16), 2741-2749.
[13] Almasi, H., Ghanbarzadeh, B., & Entezami, A. A. 2010. Physicochemical properties of starch–CMC–nanoclay biodegradable films. International journal of biological macromolecules, 46(1): 1-5.
[14] Shin, S. H., Kim, S. J., Lee, S. H., Park, K. M., & Han, J. 2014. Apple peel and carboxymethylcellulose‐based nanocomposite films containing different nanoclays. Journal of food science, 79(3): E342-E353.
[15] Razavi, S. M., Mortazavi, S. A., Matia‐Merino, L., Hosseini‐Parvar, S. H., Motamedzadegan, A., & Khanipour, E. 2009. Optimisation study of gum extraction from Basil seeds (Ocimum basilicum L.). International journal of food Science & Technology, 44(9): 1755-1762.
[16] Zahedi, Y., Fathi-Achachlouei, B., & Yousefi, A. R. 2018. Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites. International journal of biological macromolecules, 108: 863-873.
[17] Khazaei, N., Esmaiili, M., & Emam‐Djomeh, Z. 2017. Application of active edible coatings made from basil seed gum and thymol for quality maintenance of shrimp during cold storage. Journal of the Science of Food and Agriculture, 97(6): 1837-1845.
[18] Lin, L., Peng, S., Shi, C., Li, C., Hua, Z., & Cui, H. 2022. Preparation and characterization of cassava starch/sodium carboxymethyl cellulose edible film incorporating apple polyphenols. International Journal of Biological Macromolecules, 212: 155-164.
[19] Hashemi-Gahruie, H., Eskandari, M. H., Van der Meeren, P., & Hosseini, S. M. H. 2019. Study on hydrophobic modification of basil seed gum-based (BSG) films by octenyl succinate anhydride (OSA). Carbohydrate polymers, 219: 155-161.
[20] Ghanbarzadeh, B., Almasi, H., & Entezami, A. A. 2010. Physical properties of edible modified starch/carboxymethyl cellulose films. Innovative food science & emerging technologies, 11(4): 697-702.
[21] Rezaie, A., Rezaei, M., & Alboofetileh, M. 2021. Preparation of biodegradable carboxymethyl cellulose-Arabic gum composite film and evaluation of its physical, mechanical and thermal properties. Iranian Food Science and Technology Research Journal, 17(2): 287-297 (In Persian).
[22] Tongdeesoontorn, W., Mauer, L. J., Wongruong, S., & Rachtanapun, P. 2009. Water vapour permeability and sorption isotherms of cassava starch based films blended with gelatin and carboxymethyl cellulose. Asian Journal of Food and Agro-Industry, 2(4): 501-514.
[23] Ballesteros, L. F., Cerqueira, M. A., Teixeira, J. A., & Mussatto, S. I. 2018. Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides. International journal of biological macromolecules, 106: 647-655.
[24] Hazirah, M. N., Isa, M. I. N., & Sarbon, N. M. 2016. Effect of xanthan gum on the physical and mechanical properties of gelatin-carboxymethyl cellulose film blends. Food Packaging and Shelf Life, 9:55-63.
[25] Wang, R., Li, X., Ren, Z., Xie, S., Wu, Y., Chen, W. & Liu, X. 2020. Characterization and antibacterial properties of biodegradable films based on CMC, mucilage from Dioscorea opposita Thunb. and Ag nanoparticles. International Journal of Biological Macromolecules, 163: 2189-2198.
[26] Fathi-Achachlouei, B. & Zahedi, Y. 2018. Fabrication and evaluation of properties of carboxymethyl cellulose-based hybrid nanocomposites reinforced with titanium dioxide and montmorillonite. Food Science and Technology. 15(81): 35-47 (In Persian).
[27] Gutiérrez, M. Q., Echeverría, I., Ihl, M., Bifani, V., & Mauri, A. N. 2012. Carboxymethylcellulose–montmorillonite nanocomposite films activated with murta (Ugni molinae Turcz) leaves extract. Carbohydrate polymers, 87(2): 1495-1502.
[28] Ghanbarzadeh, B., Almasi, H., & Oleyaei, S. A. 2014. A novel modified starch/carboxymethyl cellulose/montmorillonite bionanocomposite film: structural and physical properties. International Journal of Food Engineering, 10(1): 121-130.
[29] Taghizadeh, M. T., Sabouri, N., & Ghanbarzadeh, B. 2013. Polyvinyl alcohol: starch: carboxymethyl cellulose containing sodium montmorillonite clay blends; mechanical properties and biodegradation behavior. SpringerPlus, 2(1): 1-8.
[30] Moghimi, R., Aliahmadi, A., & Rafati, H. 2017. Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging. Carbohydrate polymers, 175: 241-248.
[32] Ma, X., Chang, P. R., & Yu, J. (2008). Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers, 72(3), 369-375.
[31] Donhowe, I. G., & Fennema, O. (1993). The effects of solution composition and drying temperature on crystallinity, permeability and mechanical properties of methylcellulose films. Journal of Food Processing and Preservation, 17(4), 231-246.
[32] Ma, X., Chang, P. R., & Yu, J. 2008. Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers, 72(3): 369-375.
[33] Slavutsky A. M., María A. Bertuzzi, Margarita A., María G., Nelio A. 2014. Preparation and characterization of montmorillonite/brea gum nanocomposites films. Food Hydrocolloids, 35: 27-278.
[34] Rohini, B., Padma Ishwarya, S., Ram, R. & Arun Kuma, V. 2020. Ocimum basilicum seed mucilage reinforced with montmorillonite for preparation of bionanocomposite film for food packaging applications. Polymer Testing, 87: 48-55.
[35] Kang, J., Cui, S. W., Chen, J., Phillips, G. O., Wu, Y., & Wang, Q. 2011. New studies on gum ghatti (Anogeissus latifolia) part I. Fractionation, chemical and physical characterization of the gum. Food hydrocolloids, 25(8): 1984-1990.
[36] Thessrimuang, N., & Prachayawarakorn, J. 2019. Development, modification and characterization of new biodegradable film from basil seed (Ocimum basilicum L.) mucilage. Journal of the Science of Food and Agriculture, 99(12): 5508-5515.
[37] Tantiwatcharothai, S., & Prachayawarakorn, J. 2019. Characterization of an antibacterial wound dressing from basil seed (Ocimum basilicum L.) mucilage-ZnO nanocomposite. International journal of biological macromolecules, 135: 133-140.
[38] Azwa, Z.N., Yousif, A. C., & Karunasena M. W. 2013. A review on the degradability of polymeric composites based on natural fibre. Materials & Design, 47: 424-442.
[39] De Dicastillo, C. L., Bustos, F., Guarda, A., & Galotto, M. J. 2016. Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocolloids, 60: 335-344.
[40] Haque M. M. & Alsareii S. A. 2015. A review of the therapeutic effects of using miswak (Salvadora Persica) on oral health. Saudi medical journal, 36 (5): 530-543.
[41] Ma, C. C. M., Chen, Y. J., & Kuan, H. C. 2006. Polystyrene nanocomposite materials preparation, mechanical, electrical and thermal properties, and morphology. Journal of applied polymer science,
100(1): 508-515.
[42] Mohanty, S., & Nayak, S. K. 2007. Melt blended polystyrene/layered silicate nanocomposites: effect of clay modification on the mechanical, thermal, morphological and viscoelastic behavior. Journal of Thermoplastic Composite Materials, 20(2): 175-193.
[43] Pandey, J. K., Reddy, K. R., Kumar, A. P., & Singh, R. P. 2005. An overview on the degradability of polymer nanocomposites. Polymer degradation and stability, 88(2), 234-250
[44] Lee, J. Y., Liao, Y., Nagahata, R., & Horiuchi, S. 2006. Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process. Polymer, 47(23): 7970-7979.
[45] Zanetti, M., & Costa, L. 2004. Preparation and combustion behaviour of polymer/layered silicate nanocomposites based upon PE and EVA. Polymer, 45(13): 4367-4373.
[46] Vaziri, H. S., Omaraei, I. A., Abadyan, M., Mortezaei, M., & Yousefi, N. 2011. Thermophysical and rheological behavior of polystyrene/silica nanocomposites: Investigation of nanoparticle content. Materials & Design, 32(8-9): 4537-4542.