بهینه‌سازی هیدرولیز آنزیمی پروتئین دانه کدو (Cucurbita maxima L.) توسط پانکراتین با استفاده از پیش‌تیمار مایکروویو

نویسندگان
1 دانشجوی دکتری شیمی مواد غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
2 استاد گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
3 استادیار گروه نانوتکنولوژی پزشکی، دانشکده فناوری‌های نوین، دانشگاه علوم پزشکی گلستان ، گرگان، ایران.
4 استادیار گروه علوم و صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.
چکیده
دانه­های گیاهان Cucurbitaceae (کدو، خربزه و غیره) یکی از منابع غنی پروتئین، بشمار می­آیند. پروتئین­ها از جمله منابع تغذیه­ای مهم انسان هستند. هیدرولیز آنزیمی پروتئین دانه کدو با استفاده از پیش­تیمار مایکروویو منجر به تولید هیدرولیزشده­هایی با خواص زیست فعالی، از جمله فعالیت آنتی­اکسیدانی می­شود. استفاده از پیش­تیمار مایکروویو باعث ایجاد تغییراتی در ساختمان 3 بعدی پروتئین­ها می­شود، ساختار 3 بعدی پروتئین را باز کرده و دسترسی آنزیم به پیوندهای پپتیدی را تسریع می­کند. بنابراین، استفاده از پیش­تیمار مایکروویو، روشی مناسب برای صرفه­جویی در زمان و غلظت آنزیم مورد استفاده در هیدرولیز آنزیمی می­باشد. در این پژوهش محلول محتوی کنسانتره پروتئین دانه کدو در معرض انرژی مایکروویو با توان 500-900 وات طی 30-90 ثانیه قرار گرفت و به­عنوان محلول سوبسترا در آزمایشات هیدرولیز آنزیمی استفاده شد. هیدرولیز آنزیمی توسط آنزیم پانکراتین، با غلظت 5/0 تا 5/2 درصد نسبت به سوبسترای پروتئینی در بازه زمانی 20 تا 190 دقیقه، دما و pH اپتیمم پانکراتین، به­منظور تولید هیدرولیز شده­هایی با پتانسیل آنتی­­اکسیدانی انجام شد. قدرت آنتی­اکسیدانی با استفاده از روش­های مهار رادیکال آزاد DPPH، آنتی­اکسیدانی کل (جذب در 695 نانومتر) و فعالیت شلاته­کنندگی آهن، اندازه­گیری شد. بیشترین میزان فعالیت آنتی­اکسیدانی با استفاده از پیش­تیمار مایکروویو در زمان 105 دقیقه و نسبت E/S 5/1 درصد بود و شرایط بهینه ارائه شده توسط نرم­افزار برای دست­یابی بـه بیشینه فعالیت شلاته­کنندگی آهن (5/95%)، مهار رادیکال آزاد DPPH (5/%51) و آنتی­اکسیدانی کل (جذب در 695 نانومتر) (976/0)، زمان 102 دقیقـه و نسبت E/S 5/1 درصد بود که 5/89% با نتایج بدست آمده مطابقت داشت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimizing enzymatic hydrolysis of pumpkin seeds protein (Cucurbita maxima L.) by pancreatin with using microwave pretreatment

نویسندگان English

zeinab nooshi manjili 1
Alireza Sadeghi Mahoonak 2
Vahid Erfani Moghadam 3
Mohammad Ghorbani 2
Hoda Shahiri Tabarestani 4
1 Ph.D. student of food chemistry, Department of Food Science and Technology, Faculty of Food Industry, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Professor, Department of Food Science and Technology, Faculty of Food Industry, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Assistant Professor, Department of Medical Nanotechnology, Faculty of Modern Technologies, Golestan University of Medical Sciences, Gorgan, Iran.
4 Assistant Professor, Department of Food Science and Technology, Faculty of Food Industry, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده English

The seeds of Cucurbitaceae plants (pumpkin, melon, etc.) are one of the rich sources of protein. Proteins are one of the most important nutritional sources for humans. Enzymatic hydrolysis of pumpkin seed protein by using microwave pretreatment leads to the production of hydrolyzates with bioactive properties, including antioxidant activity. The use of microwave pretreatment causes changes in the 3D structure of proteins, It opens the 3-dimensional structure of the protein and accelerates the access of the enzyme to the peptide bonds. Therefore, the use of microwave pretreatment is a suitable method to save time and enzyme concentration which are used in enzymatic hydrolysis. In this study, The solution of pumpkin seed protein concentrate was exposed to microwave energy with a power of 500-900 W for 30-90 seconds and it was used as a substrate solution in enzymatic hydrolysis experiments. Enzymatic hydrolysis by pancreatin, with the concentration of 0.5 to 2.5% compared to the protein substrate, was performed in the time from 20 to 190 minutes, at the optimum temperature and pH of pancreatin, in order to produce hydrolysates with antioxidant potential. Antioxidant power was measured by using DPPH radical scavenging activity methods, total antioxidant activity (Absorbance at 695 nm) and iron chelating activity. The highest amount of antioxidant activity by using microwave pretreatment was in 105 minutes and the ratio of 1.5% E/S and the optimal conditions that provided by the software to achieve the maximum iron chelating activity (95.5%), DPPH radical scavenging activity (51.5%) and total antioxidant (Absorbance at 695 nm) (0.976), was in 102 minutes and the ratio of 1.5% E/S of which 89.5% corresponded with the obtained results.

کلیدواژه‌ها English

pancreatin
Microwave pretreatment
pumpkin seeds
Antioxidant activity
1- Korhnen, H., and Pihlanto, A. 2006. Bioactive peptides: production and functionality. International Dairy Journal, 16(9), 945-960. doi: https://doi.org/10.1016/j.idairyj.2005.10.012.
2- Li, G.H., Qu, M.R., Wan, J.Z., and You, J.M. 2007. Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia Pacific Journal of Clinical Nutrition, 16(S1), 275-280.
3- Ohinata, K., Agui, S., and Yoshikawa, M. 2007. Soymorphins, novel µ opioid peptides derived from soy βconglycinin β-subunit, have anxiolytic activities. BioScientific, Biotechnology and Biochemistry, 71(10):2618-2621. doi: https://doi.org/10.1271/bbb.70516.
4- Cho, S.-J., Juillerat, M.A., and Lee, C.H. 2008. Identification of LDL-receptor transcription stimulating peptides from soybean hydrolysate in human hepatocytes. Journal of Agricultural and Food Chemistry, 56(12), 4372-4376. doi: https://doi.org/10.1021/jf800676a.
5- Kou, X., Gao, J., Xue, Z., Zhang, Z., Wang, H., and Wang, X. 2013. Purification and identification of antioxidant peptides from chickpea (cicer arietinum L.) albumin hydrolysates. LWT-Food Science and Technology, 50(2), 591-598. doi: https://doi.org/10.1016/j.lwt.2012.08.002.
6- Meisel, H., and FitzGerald, R.J. 2003. Biofunctional peptides from milk proteins, mineral binding and cytomodulatory effects. Current Pharmaceutical Design, 9(16), 1289-1296. doi: https://doi.org/10.2174/1381612033454847.
7- Fan, S., Hu, Y., Li, C., and Liu, Y. 2014. Optimization of Preparation of Antioxidative Peptides from Pumpkin Seeds Using Response Surface Method. PLoS ONE 9(3): e92335. doi:10.1371/journal.pone.0092335.
8- Zakeri, K., Mahoonak, A.S., Ghorbani, M., Moayedi, A., and Maghsodlou, Y. 2019. Optimization of Hydrolysis Condition of Pumpkin Seeds with Alcalase Enzyme to Achieve Maximum Antioxidant and Nitric Oxide Inhibition Activity. Journal of Research and Innovation in Food Science and Technology 7 (2019) 4, 445-458 Doi: 10.22101/JRIFST.2019.02.23.748.
9- Mazloomi-Kiyapey, S.N., Mahoonak, A.S., Ranjbar-Nedamani, E., and Nourmohammadi, E. 2019. Production of antioxidant peptides through hydrolysis of medicinal pumpkin seed protein using pepsin enzyme and the evaluation of their functional and nutritional properties. ARYA Atheroscler 2019; 15(5): 218-27.
10- Lu, D., Peng, M., Yu, M., Jiang, B., Wu, H., and Chen, J. 2021. Effect of Enzymatic Hydrolysis on the Zinc Binding Capacity and in vitro Gastrointestinal Stability of Peptides Derived From Pumpkin (Cucurbita pepo L.) Seeds. Front. Nutr. 8:647782. doi: 10.3389/fnut.2021.647782.
11- BUČKO, S.Đ., KATONA, J.M., POPOVIĆ, L.M., VAŠTAG, Ž.G., and PETROVIĆ, L.B. 2016. Functional properties of pumpkin (Cucurbita pepo) seed protein isolate and hydrolysate. J. Serb. Chem. Soc. 81 (1) 35–46 (2016) UDC JSCS–4825.
12- Noor Mohammadi, E., Sadeghi Mahoonak, A.R., Sadeghi, M., Alami, M., and Ghorbani, M. 2017. Identification of the optimum conditions to anti-oxidative peptides production through the enzymatic hydrolysis of pumpkin oil cake protein by pepsin, Food Science and Technology, 13(12), 135-142.
13- Sitohy, M.Z., and El-Sayed, M. 2020. Pumpkin seed protein hydrolysate treatment alleviates salt stress effects on Phaseolus vulgaris by elevating antioxidant capacity and recovering ion homeostasis. https://doi.org/10.1016/j.scienta.2020.109495.
14- Hayta, M., Benli, B., Imen, E., and Kaya, A. 2020. Optimization of antihypertensive and antioxidant hydrolysate extraction from rice bran proteins using ultrasound assisted enzymatic hydrolysis. J. Food Meas. Charact. 2020, 14, 2578–2589.
15- Yang, X., Li, Y., Li, S., Ren, X., Oladejo, A.O., Lu, F., and Ma, H. 2020. Effects and mechanism of ultrasound pretreatment of protein on the Maillard reaction of protein-hydrolysate from grass carp (Ctenopharyngodon idella). Ultrason. Sonochem. 2020, 64, 104964.
16- Zhu, W., Yang, W., Ying, B., Li, X., Li, J., and Li, Y. 2019. Optimization of ultra high pressure coupled with enzymatic hydrolysis technology and its effect on the taste of hydrolysate of pollock bone. Sci. Technol. Food Ind. 2019, 40, 214–219.
17- Irmak, S., Meryemoglu, B., Sandip, A., Subbiah, J., Mitchell, R., and Sarath, G. 2018. Microwave pretreatment effects on switchgrass and miscanthus solubilization in subcritical water and hydrolysate utilization for hydrogen production. BiomassBioenerg. 2018, 108, 48–54.
18- Li, M., Xia, S., Zhang, Y., and Li, X. 2018. Optimization of ACE inhibitory peptides from black soybean by microwave-assisted enzymatic method and study on its stability. LWT 2018, 98, 358–365.
19- Jin, J., Okagu, O.D., and Udenigwe, C.C. 2022. Differential Influence of Microwave and Conventional Thermal Treatments on Digestibility and Molecular Structure of Buckwheat Protein Isolates. Food Biophys. 2022, 17, 198–208.
20- Hall, F., and Liceaga, A. 2020. Effect of microwave-assisted enzymatic hydrolysis of cricket (Gryllodes sigillatus) protein on ACE and DPP-IV inhibition and tropomyosin-IgG binding. J. Funct. Foods 2020, 64, 103634.
21- Falade, E.O., Mu, T.H., and Zhang, M. 2021. Improvement of ultrasound microwave-assisted enzymatic production and high hydrostatic pressure on emulsifying, rheological and interfacial characteristics of sweet potato protein hydrolysates. Food Hydrocolloid. 2021, 117, 106684.
22- AOAC, 2000. Official Methods of Analysis. 17th Edition, the Association of Official Analytical Chemists, Gaithersburg, MD, USA. Methods 925.10, 65.17, 974.24, 992.16.
23- Gohi, B. F. C. A., Du, J., Zeng, H-Y., Cao, X-j. and Kai Zou, m. 2019. Microwave Pretreatment and Enzymolysis Optimization of the Lotus Seed Protein. https://doi.org/10.3390/bioengineering6020028.
24- Alvand, M., Mahoonak , A.S., Ghorbani, M., Shahiri Tabarestani, H., and kaveh, Sh. (2023). Effect of Enzyme Type and Hydrolysis Time on Antioxidant Properties of Hydrolyzed Turkmen Melon Seed Protein, Journal of Innovation in food science and technology, 15(57), 99-112.
25- Kanbargi, K.D., Sonawane, S.K., and Arya, S.S. 2017. Encapsulation characteristics of protein hydrolysate extracted from Ziziphusjujube seed, International Journal of Food Properties, 20:12, 3215-3224, DOI: 10.1080/10942912.2017.1282516.
26- Prieto, P., Pineda, M., and Aguilar, M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, 269(2), 337-341.
27- Kaveh, Sh., Sadeghimahoonak, A.R., Ghorbani, M., Jafari, M., and Sarabandi, Kh. 2019. Optimization of Factors Affecting the Antioxidant Activity of Fenugreek Seed’s Protein Hydrolysate by Response Surface Methodology, Iranian Journal of Nutrition Sciences & Food Technology, 14(1), 77-88.
28- Gohari Ardabili, R.F., and Haddad Khodaparast, M.H. 2011. Chemical Composition and Physicochemical Properties of Pumpkin Seeds (Cucurbita pepo Subsp. pepo Var. Styriaka) Grown in Iran. J. Agr. Sci. Tech. (2011) Vol. 13: 1053-1063.
29- Xie, Z., Huang, J., Xu, X. and Jin, Z., 2008. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chemistry, 111(2): 370-376.
30- Cumby, N., Zhong, Y., Naczk, M., and Shahidi, F. 2008. Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chemistry 109(1): 144-148.
31- Uluko, H., Zhang, S., Liu, L., Tsakama, M., Lu, J., and Jiaping, Lv. 2015. Effects of thermal, microwave, and ultrasound pretreatments on antioxidative capacity of enzymatic milk protein concentrate hydrolysates. journal of functional foods 18 1138–1146.
32- Gazikalovi ́c,I., Mijalkovi ́c, J., Šekuljica, N., Jakoveti ́c Tanaskovi ́c, S., Ðuki ́c Vukovi ́c, A., Mojovi ́c, L., and Kneževi ́c-Jugovi ́c, Z. 2021. Synergistic Effect of Enzyme Hydrolysis and Microwave Reactor Pretreatment as an Efficient Procedure for Gluten Content Reduction. Foods, 10, 2214. https://doi.org/10.3390/ foods10092214.
33- Mehregan Nikoo, A., Mahoonak, A.S., Ghorbani, M., Taheri, A., Alami, M., and Kamali, F. 2014. Effect of hydrolysing condition on antioxidant activity of protein hydrolysate from Crucian carp (Carassius carassius), Journal of Research and Innovation in Food Science and Technology, 2(4), 351-364. magiran.com/p1251024.
34- Meshkinfar, N., Mahoonak, A.S., Ziaiifar, A.M., Ghorbani, M., and Kashani Nejad, M. 2014. Optimization of the production of protein hydrolysates from meat industry by products by response surface methodology. Tabriz, Journal of Food Researches. 2014; 24(2): 215-225. [in Persian].
35- Yang, X., Ren, X., and Ma, H. 2022. Effect of Microwave Pretreatment on the Antioxidant Activity and Stability of Enzymatic Products from Milk Protein. Foods 2022, 11, 1759. https://doi.org/10.3390/ foods11121759.
36- Dong, C., Li, F., Wang, L., Ma, X., Xu, J., and Kong, L. 2015. Microwave pretreatment of sunflower meal protein preparation of antioxidant peptides. Sci. Technol. Food Ind. 2015, 36, 308– 311.
37- da Rosa, G.S., Vanga, S.K., and Gariepy, Y. 2019. Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.), Innovative Food Science and Emerging Technologies. https://doi.org/10.1016/j.ifset.2019.102234.
38- Nguyen, E., Jones, O., Kim, Y.H.B., San Martin-Gonzalez, F., and Liceaga, A.M. 2017. Impact of microwave-assisted enzymatic hydrolysis on functional and antioxidant properties of rainbow trout Oncorhynchus mykiss by-products. Fisheries Science, 83, 317– 331. https://doi.org/10.1007/s12562-017-1067-3.