1- Korhnen, H., and Pihlanto, A. 2006. Bioactive peptides: production and functionality. International Dairy Journal, 16(9), 945-960. doi: https://doi.org/10.1016/j.idairyj.2005.10.012.
2- Li, G.H., Qu, M.R., Wan, J.Z., and You, J.M. 2007. Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia Pacific Journal of Clinical Nutrition, 16(S1), 275-280.
3- Ohinata, K., Agui, S., and Yoshikawa, M. 2007. Soymorphins, novel µ opioid peptides derived from soy βconglycinin β-subunit, have anxiolytic activities. BioScientific, Biotechnology and Biochemistry, 71(10):2618-2621. doi: https://doi.org/10.1271/bbb.70516.
4- Cho, S.-J., Juillerat, M.A., and Lee, C.H. 2008. Identification of LDL-receptor transcription stimulating peptides from soybean hydrolysate in human hepatocytes. Journal of Agricultural and Food Chemistry, 56(12), 4372-4376. doi: https://doi.org/10.1021/jf800676a.
5- Kou, X., Gao, J., Xue, Z., Zhang, Z., Wang, H., and Wang, X. 2013. Purification and identification of antioxidant peptides from chickpea (cicer arietinum L.) albumin hydrolysates. LWT-Food Science and Technology, 50(2), 591-598. doi: https://doi.org/10.1016/j.lwt.2012.08.002.
6- Meisel, H., and FitzGerald, R.J. 2003. Biofunctional peptides from milk proteins, mineral binding and cytomodulatory effects. Current Pharmaceutical Design, 9(16), 1289-1296. doi: https://doi.org/10.2174/1381612033454847.
7- Fan, S., Hu, Y., Li, C., and Liu, Y. 2014. Optimization of Preparation of Antioxidative Peptides from Pumpkin Seeds Using Response Surface Method. PLoS ONE 9(3): e92335. doi:10.1371/journal.pone.0092335.
8- Zakeri, K., Mahoonak, A.S., Ghorbani, M., Moayedi, A., and Maghsodlou, Y. 2019. Optimization of Hydrolysis Condition of Pumpkin Seeds with Alcalase Enzyme to Achieve Maximum Antioxidant and Nitric Oxide Inhibition Activity. Journal of Research and Innovation in Food Science and Technology 7 (2019) 4, 445-458 Doi: 10.22101/JRIFST.2019.02.23.748.
9- Mazloomi-Kiyapey, S.N., Mahoonak, A.S., Ranjbar-Nedamani, E., and Nourmohammadi, E. 2019. Production of antioxidant peptides through hydrolysis of medicinal pumpkin seed protein using pepsin enzyme and the evaluation of their functional and nutritional properties. ARYA Atheroscler 2019; 15(5): 218-27.
10- Lu, D., Peng, M., Yu, M., Jiang, B., Wu, H., and Chen, J. 2021. Effect of Enzymatic Hydrolysis on the Zinc Binding Capacity and in vitro Gastrointestinal Stability of Peptides Derived From Pumpkin (Cucurbita pepo L.) Seeds. Front. Nutr. 8:647782. doi: 10.3389/fnut.2021.647782.
11- BUČKO, S.Đ., KATONA, J.M., POPOVIĆ, L.M., VAŠTAG, Ž.G., and PETROVIĆ, L.B. 2016. Functional properties of pumpkin (Cucurbita pepo) seed protein isolate and hydrolysate. J. Serb. Chem. Soc. 81 (1) 35–46 (2016) UDC JSCS–4825.
12- Noor Mohammadi, E., Sadeghi Mahoonak, A.R., Sadeghi, M., Alami, M., and Ghorbani, M. 2017. Identification of the optimum conditions to anti-oxidative peptides production through the enzymatic hydrolysis of pumpkin oil cake protein by pepsin, Food Science and Technology, 13(12), 135-142.
13- Sitohy, M.Z., and El-Sayed, M. 2020. Pumpkin seed protein hydrolysate treatment alleviates salt stress effects on Phaseolus vulgaris by elevating antioxidant capacity and recovering ion homeostasis. https://doi.org/10.1016/j.scienta.2020.109495.
14- Hayta, M., Benli, B., Imen, E., and Kaya, A. 2020. Optimization of antihypertensive and antioxidant hydrolysate extraction from rice bran proteins using ultrasound assisted enzymatic hydrolysis. J. Food Meas. Charact. 2020, 14, 2578–2589.
15- Yang, X., Li, Y., Li, S., Ren, X., Oladejo, A.O., Lu, F., and Ma, H. 2020. Effects and mechanism of ultrasound pretreatment of protein on the Maillard reaction of protein-hydrolysate from grass carp (Ctenopharyngodon idella). Ultrason. Sonochem. 2020, 64, 104964.
16- Zhu, W., Yang, W., Ying, B., Li, X., Li, J., and Li, Y. 2019. Optimization of ultra high pressure coupled with enzymatic hydrolysis technology and its effect on the taste of hydrolysate of pollock bone. Sci. Technol. Food Ind. 2019, 40, 214–219.
17- Irmak, S., Meryemoglu, B., Sandip, A., Subbiah, J., Mitchell, R., and Sarath, G. 2018. Microwave pretreatment effects on switchgrass and miscanthus solubilization in subcritical water and hydrolysate utilization for hydrogen production. BiomassBioenerg. 2018, 108, 48–54.
18- Li, M., Xia, S., Zhang, Y., and Li, X. 2018. Optimization of ACE inhibitory peptides from black soybean by microwave-assisted enzymatic method and study on its stability. LWT 2018, 98, 358–365.
19- Jin, J., Okagu, O.D., and Udenigwe, C.C. 2022. Differential Influence of Microwave and Conventional Thermal Treatments on Digestibility and Molecular Structure of Buckwheat Protein Isolates. Food Biophys. 2022, 17, 198–208.
20- Hall, F., and Liceaga, A. 2020. Effect of microwave-assisted enzymatic hydrolysis of cricket (Gryllodes sigillatus) protein on ACE and DPP-IV inhibition and tropomyosin-IgG binding. J. Funct. Foods 2020, 64, 103634.
21- Falade, E.O., Mu, T.H., and Zhang, M. 2021. Improvement of ultrasound microwave-assisted enzymatic production and high hydrostatic pressure on emulsifying, rheological and interfacial characteristics of sweet potato protein hydrolysates. Food Hydrocolloid. 2021, 117, 106684.
22- AOAC, 2000. Official Methods of Analysis. 17th Edition, the Association of Official Analytical Chemists, Gaithersburg, MD, USA. Methods 925.10, 65.17, 974.24, 992.16.
23- Gohi, B. F. C. A., Du, J., Zeng, H-Y., Cao, X-j. and Kai Zou, m. 2019. Microwave Pretreatment and Enzymolysis Optimization of the Lotus Seed Protein. https://doi.org/10.3390/bioengineering6020028.
24- Alvand, M., Mahoonak , A.S., Ghorbani, M., Shahiri Tabarestani, H., and kaveh, Sh. (2023). Effect of Enzyme Type and Hydrolysis Time on Antioxidant Properties of Hydrolyzed Turkmen Melon Seed Protein, Journal of Innovation in food science and technology, 15(57), 99-112.
25- Kanbargi, K.D., Sonawane, S.K., and Arya, S.S. 2017. Encapsulation characteristics of protein hydrolysate extracted from Ziziphusjujube seed, International Journal of Food Properties, 20:12, 3215-3224, DOI: 10.1080/10942912.2017.1282516.
26- Prieto, P., Pineda, M., and Aguilar, M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical biochemistry, 269(2), 337-341.
27- Kaveh, Sh., Sadeghimahoonak, A.R., Ghorbani, M., Jafari, M., and Sarabandi, Kh. 2019. Optimization of Factors Affecting the Antioxidant Activity of Fenugreek Seed’s Protein Hydrolysate by Response Surface Methodology, Iranian Journal of Nutrition Sciences & Food Technology, 14(1), 77-88.
28- Gohari Ardabili, R.F., and Haddad Khodaparast, M.H. 2011. Chemical Composition and Physicochemical Properties of Pumpkin Seeds (Cucurbita pepo Subsp. pepo Var. Styriaka) Grown in Iran. J. Agr. Sci. Tech. (2011) Vol. 13: 1053-1063.
29- Xie, Z., Huang, J., Xu, X. and Jin, Z., 2008. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chemistry, 111(2): 370-376.
30- Cumby, N., Zhong, Y., Naczk, M., and Shahidi, F. 2008. Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chemistry 109(1): 144-148.
31- Uluko, H., Zhang, S., Liu, L., Tsakama, M., Lu, J., and Jiaping, Lv. 2015. Effects of thermal, microwave, and ultrasound pretreatments on antioxidative capacity of enzymatic milk protein concentrate hydrolysates. journal of functional foods 18 1138–1146.
32- Gazikalovi ́c,I., Mijalkovi ́c, J., Šekuljica, N., Jakoveti ́c Tanaskovi ́c, S., Ðuki ́c Vukovi ́c, A., Mojovi ́c, L., and Kneževi ́c-Jugovi ́c, Z. 2021. Synergistic Effect of Enzyme Hydrolysis and Microwave Reactor Pretreatment as an Efficient Procedure for Gluten Content Reduction. Foods, 10, 2214. https://doi.org/10.3390/ foods10092214.
33- Mehregan Nikoo, A., Mahoonak, A.S., Ghorbani, M., Taheri, A., Alami, M., and Kamali, F. 2014. Effect of hydrolysing condition on antioxidant activity of protein hydrolysate from Crucian carp (Carassius carassius), Journal of Research and Innovation in Food Science and Technology, 2(4), 351-364. magiran.com/p1251024.
34- Meshkinfar, N., Mahoonak, A.S., Ziaiifar, A.M., Ghorbani, M., and Kashani Nejad, M. 2014. Optimization of the production of protein hydrolysates from meat industry by products by response surface methodology. Tabriz, Journal of Food Researches. 2014; 24(2): 215-225. [in Persian].
35- Yang, X., Ren, X., and Ma, H. 2022. Effect of Microwave Pretreatment on the Antioxidant Activity and Stability of Enzymatic Products from Milk Protein. Foods 2022, 11, 1759. https://doi.org/10.3390/ foods11121759.
36- Dong, C., Li, F., Wang, L., Ma, X., Xu, J., and Kong, L. 2015. Microwave pretreatment of sunflower meal protein preparation of antioxidant peptides. Sci. Technol. Food Ind. 2015, 36, 308– 311.
37- da Rosa, G.S., Vanga, S.K., and Gariepy, Y. 2019. Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.), Innovative Food Science and Emerging Technologies. https://doi.org/10.1016/j.ifset.2019.102234.
38- Nguyen, E., Jones, O., Kim, Y.H.B., San Martin-Gonzalez, F., and Liceaga, A.M. 2017. Impact of microwave-assisted enzymatic hydrolysis on functional and antioxidant properties of rainbow trout Oncorhynchus mykiss by-products. Fisheries Science, 83, 317– 331. https://doi.org/10.1007/s12562-017-1067-3.