تولید شورتنینگ کم‌کالری با استفاده از امولسیون ژل با درصد بالای فاز داخلی و کاربرد آن در سیستم غذایی

نویسنده
سازمان مرکزی جهاد دانشگاهی، پژوهشکده علوم و فناوری مواد غذایی ، گروه کیفیت و ایمنی مواد غذایی
چکیده
پژوهش حاضر، باهدف تولید امولسیون ژل با اسیدهای چرب اشباع و ترانس کاهش‌یافته باقابلیت مصرف به‌عنوان شورتنینگ، انجام شد. از هیدروکلوئیدهای گوار، κ-کاراگینان ، CMC و مالتودکسترین برای تهیه امولسیون ژل، استفاده شد. برای پایداری امولسیون، از امولسیفایر PGPR (1 درصد) استفاده شد. در فاز اول پژوهش، برای تولید امولسیون ژل با استفاده از صمغ گوار0 تا 25/0 درصد، κ-کاراگینان 0 تا 2 درصد، CMC 0 تا 3 درصد و مالتودکسترین 0 تا 20 درصد، با نرم‌افزار Design Expert و به‌وسیله روش سطح پاسخ و طرح بهینه، فرمولاسیون‌های مختلفی ارائه و نمونه‌ها تولید شدند. آزمون‌های ارزیابی حسی و سفتی دستگاهی انجام گرفت و مدل‌های رگرسیونی برای پیش‌بینی پاسخ‌های سفتی، پذیرش کلی و سفتی دستگاهی ارائه و فرمولاسیون بهینه تعیین شد. در فاز دوم پژوهش، فرمولاسیون بهینه امولسیون ژل در سطوح 25، 50، 75 و 100% برای تولید بیسکویت مورداستفاده قرار گرفت و ویژگی‌های فیزیکوشیمیایی، حسی و اندیس پراکسید موردبررسی قرار گرفت. نتایج نشان داد با جایگزینی 50% شورتنینگ با امولسیون ژل می‌توان بیسکویتی با میزان چربی و اسید چرب اشباع کمتر و بدون ترانس و ازنظر خصوصیات فیزیکوشیمیایی و حسی مشابه با نمونه حاوی شورتنینگ به دست آورد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Production of low-calorie shortening from high internal phase emulsion gel and its application in the food system

نویسنده English

zahra nazari
Food quality and Safety Research Group. Food Science and Technology Research Institute ACECR Mashhad, Iran.
چکیده English

Abstract: The current research was conducted to produce a gel emulsion with reduced saturated and Trans fatty acids that can be used as shortening. Hydrocolloids of guar gum, κ-carrageenan, CMC, and maltodextrin were used to prepare gel emulsion. For emulsion stability, PGPR (1%) was used as an emulsifier. In the first phase of the research, for the production of gel emulsion using guar gum from 0 to 0.25%, κ-carrageenan from 0 to 2%, CMC from 0 to 3%, and maltodextrin from 0 to 20%, different formulations were determined by Design Expert software and by Response surface method and optimal design, and samples formulations were produced. Sensory and hardness evaluation tests were performed and regression models for predicting hardness (sensory) responses, overall acceptance, and hardness were presented and the optimal formulation was determined. In the second phase of the research, the optimal formulation of gel emulsion at the levels of 25, 50, 75, and 100% was used to produce biscuits, and the physicochemical, sensory, and peroxide value were investigated. The results showed that by replacing 50% of shortening with biscuit gel emulsion with less amount of fat and saturated fatty acid and without Trans and in terms of physicochemical and sensory properties, it is obtained similar to the sample containing shortening.

کلیدواژه‌ها English

gel emulsion
Optimization
shortening
Biscuit
[1] Wang, Q. Afshin, A., Yakoob, M.Y., Singh, G.M., Rehm, C.D., Khatibzadeh, S., Micha, R., Shi, P., Mozaffarian, D., Nutrition, G.B.o.D., and Group, C.D.E., (2016). Impact of nonoptimal intakes of saturated, polyunsaturated, and trans fat on global burdens of coronary heart disease. Journal of the American Heart Association. 5(1): e002891.
[2] FAO, (2010). Fats and fatty acids in human nutrition. Report of an expert consultation, 10-14 November 2008, Geneva. Food and Agriculture Organization of the United Nations: Rome.
[3] World Health Organization, (2003). Diet, nutrition, and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation, in WHO Technical Report Series, No. 916. World Health Organization: Genava.
[4] Co, E.D. and Marangoni, A.G., (2012). Organogels: An alternative edible oil structuring method. Journal of the American Oil Chemists' Society. 89(5): 749780.
[5] Martins, A.J., Vicente, A.A., Cunha, R.L., and Cerqueira, M.A., (2018). Edible oleogels: an opportunity for fat replacement in foods. Food & Function. 9(2): 758773.
[6] Dickinson, E., (2012). Emulsion gels: The structuring of soft solids with proteinstabilized Oil droplets. Food Hydrocolloids. 28(1): 224-241.
[7] Torres, O., Tena, N.M., Murray, B., and Sarkar, A., (2017). Novel starch based emulsion gels and emulsion microgel particles: Design, structure and rheology. Carbohydrate Polymers. 178: 86-94.
[8] Hughes, N. E., Marangoni, A. G., Wright, A. J., Rogers, M. A., & Rush, J. W. E. (2009). Potential food applications of edible oil organogels. Trends in Food Science and Technology, 20: 470-480.
[9] Pandey, S., Senthilguru, K., Uvanesh, K., Sagiri, S., Behera, B., Babu, N., Bhattacharyya, M., Pal, K., and Banerjee, I., (2016). Natural gum modified emulsion gel as single carrier for the oral delivery of probiotic-drug combination. International Journal of Biological Macromolecules. 92: 504-514.
[10] Patel, A.R., Rodriguez, Y., Lesaffer, A., and Dewettinck, K., (2014). High internal phase emulsion gels (HIPE-gels) prepared using food-grade components. RSC advances. 4(35): 18136-18140.
[11] Gutiérrez-Luna, K., Astiasaran, L., Ansorena, D. (2023). Fat reduced cookies using an olive oil-alginate gelled emulsion: Sensory properties, storage stability and in vitro digestion, Food Research International, 167, 112714.
[12] Wang, Q., M. Espert, M., Larrea, V., Quiles, A., Salvador, A., Sanz, T. (2023). Comparison of different indirect approaches to design edible oleogels based on cellulose ethers, Food Hydrocolloids, 134: 108007.
[13] Hadnađev, M., Hadnađev, T.D., Torbica, A., Dokić, L., Pajin, B., and Krstonošić, V., (2011). Rheological properties of maltodextrin based fat-reduced confectionery spread systems. Procedia Food Science. 1: 62-67.
[14] Jang, A., Bae, W., Hwang, H.S., Lee, H.G., & Lee, S. (2015). Evaluation of canola oil oleogels with candelilla wax as an alternative to shortening in baked goods. Food Chemistry, 187: 525–529.
[15] Martínez-Cervera, S., Salvador, A., & Sanz, T. (2015). Formulating biscuits with healthier fats. Consumer profiling of textural and flavour sensations during consumption. Food Research International, 53: 134–140.
[16] Giacomozzi, A.S., Carrin, M.E., & Palla, C.A. (2018). Muffins elaborated with optimized monoglycerides oleogels: from solid fat replacer obtention to product quality evaluation. Journal of Food Science, 83(6): 1505-1515.
[17] Giarnetti, M., Paradiso, V.M., Caponio, F., Summo, C., & Pasqualone, A. (2015). Fat replacement in shortbread cookies using an emulsion filled gel based on inulin and extra virgin olive oil. LWT - Food Science and Technology, 63: 349-365.
[18] ISIRI. (2014). Edible fats and oils – Refined Sesame oilSpecifications and Test methods. Institute of Standards and Industrial Research of Iran. (1752)
[19] Yılmaz, E. and Öğütcü, M., (2015). Oleogels as spreadable fat and butter alternatives: Sensory description and consumer perception. Rsc Advances. 5(62): 50259-50267.
[20] Lumor, S.E., Pina-Rodriguez, A.M., Shewfelt, R.L., and Akoh, C.C., (2010). Physical and sensory attributes of a trans-free spread formulated with a blend containing a structured lipid, palm mid-fraction, and cottonseed oil. Journal of the American Oil Chemists' Society. 87(1): 69-74.
[21] ISIRI. (2019). Biscuit- Specifications and test Methods. Institute of Standards and Industrial Research of Iran. (37)
[22] Sudha,. M.L, Vetrimani, R., & Leelavathi, K. (2007). Influence of fibre from different cereals on the rheological characteristics of wheat flour dough and on biscuit quality. Food Chemistry, 100: 1365–1370.
[23] ISIRI. (2022). Animal and vegetable fats and oils― Gas chromatography of fatty acid methyl esters― Part 2: Preparation of methyl esters of fatty acids. Institute of Standards and Industrial Research of Iran. (13126-2)
[24] Glibowski, P., Zarzycki, P., and Krzepkowska, M., (2008). The rheological and instrumental textural properties of selected table fats. International Journal of Food Properties. 11(3): 678-686.
[25] Dickinson, E., (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids. 17(1): 25-39.
[26] Dolz, M., Hernandez, M., and Delegido, J., (2006). Oscillatory measurements for salad dressings stabilized with modified starch, xanthan gum, and locust bean gum. Journal of Applied Polymer Science. 102(1): 897-903.
[27] Imeson, A., (2009), Carrageenan and furcellaran, in Handbook of hydrocolloids, G.O. Phillips and P.A. Williams, Editors. CRC. pp. 164-185.
[28] Pinheiro, A., Bourbon, A., Rocha, C., Ribeiro, C., Maia, J., Gonçalves, M., Teixeira, J., and Vicente, A., (2011). Rheological characterization of κcarrageenan/galactomannan and xanthan/galactomannan gels: Comparison of galactomannans from non-traditional sources with conventional galactomannans. Carbohydrate Polymers. 83(2): 392-399.
[29] Barak, S. and Mudgil, D., (2014). Locust bean gum: processing, properties and food applications—a review. International Journal of Biological Macromolecules. 66: 74-80.
[30] Yılmaza, E., & Oğutcua, M. (2015). Texture, sensory properties and stability of cookies prepared with wax oleogels. Food and Function, 6(4):1194-204.
[31] Patel, A. R., Rajarethinem, P. S., Gre˛dowska, A., Turhan, O., Lesaffer, A., De Vos, W., et al. (2014a). Edible applications of shellac oleogels: spreads, chocolate paste and cakes. Food and Function, 5: 645-652.
[32] Yılmaz, E., & Öğütcü, M. (2014). Comparative analysis of olive oil organogels containing beeswax and sunflower wax with breakfast margarine. Journal of Food Science, 79(9): E1732-1738.