1. Kumari, N. and K. Sethy, THE INVERTASE-A REVIEW. International Journal of Bio-pharmacology, Biotechnology and Allied Sciences, 2020. 1(2): p. 192-209.
2. Deljou, A. and I. Arezi, Production of thermostable extracellular α-amylase by a moderate thermophilic Bacillus licheniformis isolated from Qinarje Hot Spring (Ardebil prov. of Iran). Periodicum Biologorum, 2016. 118(4).
3. Garcia, M.A.V.T., C.F. Garcia, and A.A.G. Faraco, Pharmaceutical and biomedical applications of native and modified starch: A review. Starch‐Stärke, 2020. 72(7-8): p. 1900270.
4. Matpan Bekler, F. and K. Güven, Isolation and production of thermostable α-amylase from thermophilic Anoxybacillus sp. KP1 from Diyadin hot spring in Ağri, Turkey. Biologia, 2014. 69(4): p. 419-427.
5. Kiran, S., et al., Isolation and characterization of thermostable amylase producing bacteria from hot springs of Bihar, India. International Journal of Pharma medicine and biological sciences, 2018. 7(2): p. 28-34.
6. Miller, G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 1959. 31(3): p. 426-428.
7. Bernfeld, P., [17] Amylases, α and β. 1955.
8. Bulut, Ç., Isolation and molecular characterization of lactic acid bacteria from cheese. 2003: Izmir Institute of Technology (Turkey).
9. Davati, N., et al., Study of lactic acid bacteria community from raw milk of Iranian one humped camel and evaluation of their probiotic properties. Jundishapur journal of microbiology, 2015. 8(5).
10. Thippeswamy, S., K. Girigowda, and V. Mulimani, Isolation and identification of α-amylase producing Bacillus sp. from dhal industry waste. 2006.
11. Saxena, R. and R. Singh, Amylase production by solid-state fermentation of agro-industrial wastes using Bacillus sp. Brazilian Journal of Microbiology, 2011. 42: p. 1334-1342.
12. Das, K., R. Doley, and A.K. Mukherjee, Purification and biochemical characterization of a thermostable, alkaliphilic, extracellular α‐amylase from Bacillus subtilis DM‐03, a strain isolated from the traditional fermented food of India.
Biotechnology and applied biochemistry, 2004. 40(3): p. 291-298.
13. Cordeiro, C.A.M., M.L.L. Martins, and A.B. Luciano, Production and properties of alpha-amylase from thermophilic Bacillus sp. Brazilian Journal of Microbiology, 2002. 33: p. 57-61.
14. Hmidet, N., et al., A novel α-amylase from Bacillus mojavensis A21: purification and biochemical characterization. Applied biochemistry and biotechnology, 2010. 162: p. 1018-1030.
15. Srivastava, R. and J. Baruah, Culture conditions for production of thermostable amylase by Bacillus stearothermophilus. Applied and Environmental Microbiology, 1986. 52(1): p. 179-184.
16. Elkhalil, E.A. and F.Y. Gaffar, Biochemical characterization of thermophilic amylase enzyme isolated from Bacillus strains. 2011.
17. Kaneko, T., T. Ohno, and N. Ohisa, Purification and characterization of a thermostable raw starch digesting amylase from a Streptomyces sp. isolated in a milling factory. Bioscience, biotechnology, and biochemistry, 2005. 69(6): p. 1073-1081.
18. Ajayi, A. and O. Fagade, Utilization of corn starch as sustrate for ß-Amylase by Bacillus SPP. African Journal of Biomedical Research, 2003. 6(1).
19. Namasivayam, S.K.R. and D. Nirmala, Evaluation of organic waste liquor media for the production of alpha amylase using Aspergillus niger. Peak J. Biotechnol, 2013. 1(2): p. 7-11.
20. Wind, R., et al., Characterization of a new Bacillus stearothermophilus isolate: a highly thermostable α-amylase-producing strain. Applied Microbiology and Biotechnology, 1994. 41: p. 155-162.
21. Daniel, R.M., M. Dines, and H.H. Petach, The denaturation and degradation of stable enzymes at high temperatures. Biochemical journal, 1996. 317(1): p. 1-11.