[1]Wang, S .G., Gong, W .X., Liu, X .W., Tian, L., Yue, Q .Y., and Gao, B. Y. 2007. Production of a novel bioflocculant by culture of Klebsiella mobilis using dairy wastewater. J. Biochem. Eng, 36(2): 81-86.
[2]Demirel, B., Yenigun, O., and Onay, T .T. 2005. Anaerobic treatment of dairy wastewaters: a review. J. Process Biochem, 40(8): 2583-2595.
[3]Porwal, H .J., Mane, A .V., and Velhal, S .G. 2015. Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. J. Water Resour. Ind, 9: 1-15.
[4]Lappa, I .K., Papadaki, A., Kachrimanidou, V., Terpou, A., Koulougliotis, D., Eriotou, E., and Kopsahelis, N. 2019. Cheese whey processing: integrated biorefinery concepts and emerging food applications. J. Foods, 8(8): 347.
[5]Falah, F., Vasiee, A., Tabatabaei-Yazdi, F., Moradi, S., and Sabahi, S. 2022. Optimization of γ-aminobutyric acid (GABA) production by Lactobacillus spp. from agro-food waste. J. Biomass Convers, 1-13.
[6]Vasiee, A., Alizadeh Behbahani, B., Tabatabaei Yazdi, F., Mortazavi, S .A., and Noorbakhsh, H. 2018. Diversity and probiotic potential of lactic acid bacteria isolated from horreh, a traditional Iranian fermented food. J. Probiotics Antimicrob, 10: 258-268.
[7]Sengun, I .Y., and Karapinar, M. 2012. Microbiological quality of T arhana, T urkish cereal based fermented food. J. Qual. Assur. Saf, 4(1): 17-25.
[8]Tamime, A .Y., and Thomas, L .V. (Eds.). 2018. Probiotic dairy products. John Wiley & Sons.
[9]Bacha, K., Mehari, T., and Ashenafi, M. 2010. Antimicrobial susceptibility patterns of LAB isolated from wakalim, a traditional ethiopian fermented sausage. J. Food Saf, 30(1): 213-223.
[10]Mathara, J .M., Schillinger, U., Kutima, P .M., Mbugua, S .K., and Holzapfel, W .H. 2004. Isolation, identification and characterisation of the dominant microorganisms of kule naoto: the Maasai traditional fermented milk in Kenya. J. Int. Food Microbiol, 94(3): 269-278.
[11]Canon, F., Nidelet, T., Guédon, E., Thierry, A., and Gagnaire, V. 2020. Understanding the mechanisms of positive microbial interactions that benefit lactic acid bacteria co-cultures. J. Front Microbiol, 11: 2088.
[12]García-Ruiz, A., de Llano, D .G., Esteban-Fernández, A., Requena, T., Bartolomé, B., and Moreno-Arribas, M .V. 2014. Assessment of probiotic properties in lactic acid bacteria isolated from wine. J. Food Microbiol, 44: 220-225.
[13]Ouwehand, A .C., Salminen, S., and Isolauri, E. 2002. Probiotics: an overview of beneficial effects. In Lactic Acid Bacteria: Genetics, Metabolism and Applications: Proceedings of the seventh Symposium on lactic acid bacteria: genetics, metabolism and applications. Egmond aan Zee, the Netherlands (pp. 279-289): Springer Netherlands.
[14]Mosallaie, F., Jooyandeh, H., Hojjati, M., and Fazlara, A. 2020. Biological reduction of aflatoxin B1 in yogurt by probiotic strains of Lactobacillus acidophilus and Lactobacillus rhamnosus. J. Food Sci. Biotechnol, 29(6): 793-803.
[15]Falah, F., Vasiee, A., Behbahani, B .A., Yazdi, F .T., Moradi, S., Mortazavi, S .A., and Roshanak, S. 2019. Evaluation of adherence and anti-infective properties of probiotic Lactobacillus fermentum strain 4-17 against Escherichia coli causing urinary tract infection in humans. J. Microb. Pathog, 131: 246-253.
[16]de Souza, B .M .S., Borgonovi, T .F., Casarotti, S .N., Todorov, S .D., and Penna, A .L .B. 2019. Lactobacillus casei and Lactobacillus fermentum strains isolated from mozzarella cheese: probiotic potential, safety, acidifying kinetic parameters and viability under gastrointestinal tract conditions. J. Probiotics Antimicrob, 11: 382-396.
[17] Joyndeh, H., Alizadeh Behbahani, B., and Noshad, M., 2021. Investigating the effect of inulin on the viability of Lactobacillus fermentum strain 4-17 in practical ice cream and evaluating its microbial and physicochemical characteristics. J. F.S.T, 18(113): 91-100.
[18]Chicatto, J .A., Costa, A., Nunes, H., Helm, C .V., & Tavares, L. 2014. Evaluation of hollocelulase production by Lentinula edodes (Berk.) Pegler during the submerged fermentation growth using RSM. J. Braz. Biol, 74: 243-250.
[19]Horackova, S., Vesela, K., Klojdova, I., Bercikova, M., and Plockova, M. 2020. Bile salt hydrolase activity, growth characteristics and surface properties in Lactobacillus acidophilus. J. Eur. Food Res. Technol, 246: 1627-1636.
[20]Liu, T., Li, Y., Chen, J., Sadiq, F .A., Zhang, G., Li, Y., and He, G. 2016. Prevalence and diversity of lactic acid bacteria in Chinese traditional sourdough revealed by culture dependent and pyrosequencing approaches. J. LWT-FOOD SCI TECHNOL, 68: 91-97.
[21]Singh, A .K., Singh, G., Gautam, D., and Bedi, M .K. 2013. Optimization of dairy sludge for growth of Rhizobium cells. J. Biomed Res. Int, 2013.
[22]Harrigan, W .F., and McCance, M .E. 1976. Laboratory methods in food and dairy microbiology. Academic Press Inc.(London) Ltd.
[23]Mahon, C .R., and Manuselis, G. (Eds.). 2000. Textbook of diagnostic microbiology (Vol. 355). WB Saunders company.
[24]Choi, G .H., Lee, N .K., and Paik, H .D. 2021. Optimization of medium composition for biomass production of Lactobacillus plantarum 200655 using response surface methodology. J. Microbiol. Biotechnol. 31(5): 717-725
[25]Sharmila, V .G., Angappane, S., Gunasekaran, M., Kumar, G., and Banu, J .R. 2020. Immobilized ZnO nano film impelled bacterial disintegration of dairy sludge to enrich anaerobic digestion for profitable bioenergy production: Energetic and economic analysis. J. Bioresour. Technol, 308: 123276.
[26] Eskandari, E., Tabatabai Yazdi, F., Mortazavi S .A., and Kochaki. A., optimization of exopolysaccharide production by Rhizubium radiobacter PTCC 1654 bacteria in dairy sludge using statistical response surface method. J. F.S.T, 15(81): 201-215.
[27] Gharibzahedi, S .M .T., Mousavi, S .M., Hamedi, M., Rezaei, K., and Khodaiyan, F. 2013. Evaluation of physicochemical properties and antioxidant activities of Persian walnut oil obtained by several extraction methods. J. Ind Crops Prod, 45: 133-140.
[28]Koocheki, A., Taherian, A .R., Razavi, S .M., and Bostan, A. 2009. Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds. J. Food Hydrocoll, 23(8): 2369-2379.
[29]Silva, M .F., Fornari, R .C., Mazutti, M .A., de Oliveira, D., Padilha, F .F., Cichoski, A .J., and Treichel, H. 2009. Production and characterization of xantham gum by Xanthomonas campestris using cheese whey as sole carbon source. J. Food Eng, 90(1): 119-123.
[30]Hasegawa, M., Yamane, D., Funato, K., Yoshida, A., and Sambongi, Y. 2018. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis. J. Biosci. Bioeng, 125(3): 316-319.
[31]Ghazanfari, N., Falah, S., Vasiee, A., and Yazdi, F .T. 2023. Optimization of fermentation culture medium containing food waste for l-glutamate production using native lactic acid bacteria and comparison with industrial strain. J. LWT, 114871.
[32]Moradi, S., Zeraatpisheh, F., and Tabatabaee-Yazdi, F. 2022. Investigation of lactic acid production in optimized dairy wastewater culture medium. J. Biomass Convers. Biorefin, 1-12.
[33]Falah, F., Vasiee, A., Tabatabaei-Yazdi, F., Moradi, S., and Sabahi, S. 2022. Optimization of γ-aminobutyric acid (GABA) production by Lactobacillus spp. from agro-food waste. J. Biomass Convers. Biorefin, 1-13.
[34]Schepers, A .W., Thibault, J., and Lacroix, C. 2002. Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part I. Multiple factor kinetic analysis. J. Enzyme Microb. Technol, 30(2): 176-186.
[35]Chasoy, G .R., Chairez, I., and Durán-Páramo, E. 2020. Carbon/nitrogen ratio and initial pH effects on the optimization of lactic acid production by Lactobacillus casei subsp casei NRRL-441. J. Carbon, 27(10).
[36]Talluri, V .P., and Lanka, S .S. 2017. Optimization of cultural parameters for the production of antimicrobial compound from Lactobacillus fermentum (MTCC No. 1745). J. Bacteriol. Mycol, 4(5).
[37]Wang, X., Shao, C., Liu, L., Guo, X., Xu, Y., and Lü, X. 2017. Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. J. Int. Biol. Macromol, 103: 1173-1184.
[38]Jawad, A .H., Alkarkhi, A .F., Jason, O .C., Easa, A .M., and Norulaini, N .N. 2013. Production of the lactic acid from mango peel waste–Factorial experiment. J. King Saud Univ. Sci, 25(1): 39-45.
[39]Fu, R., Guan, M., Wang, G., Pan, L., and Li, Y. 2023. Optimised fermentation of bamboo waste using three types lactic acid bacteria and forming mechanism of binderless particleboard. J. Ind Crops Prod, 196: 116522.
[40]Dineshbhai, C .K., Basaiawmoit, B., Sakure, A .A., Maurya, R., Bishnoi, M., Kondepudi, K .K., and Hati, S. 2022. Exploring the potential of Lactobacillus and Saccharomyces for biofunctionalities and the release of bioactive peptides from whey protein fermentate. J. Food Biosci, 48: 101758.
[41]Tari, C., Ustok, F .I., and Harsa, S. (2009). Optimization of the associative growth of novel yoghurt cultures in the production of biomass, β-galactosidase and lactic acid using response surface methodology. J. Int. Dairy, 19(4): 236-243.