مدل‌سازی تولید زیست‌توده میکروبی توسط لاکتوباسیلوس فرمنتوم 17-4 جدا شده از ترخینه در بستر لجن لبنی به‌وسیله روش سطح پاسخ (RSM)

نویسندگان
1 دانشجوی کارشناسی ارشد، گروه آموزشی علوم و مهندسی صنایع غذایی گرایش زیست‌فناوری، دانشگاه فردوسی مشهد، مشهد، ایران
2 استاد، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
3 دکترا تخصصی، گروه آموزشی علوم و مهندسی صنایع غذایی گرایش زیست‌فناوری، دانشگاه فردوسی مشهد، مشهد، ایران
چکیده
لجن لبنی یکی از ضایعات اصلی و ارزان‌قیمت صنایع لبنی است که حاوی مواد مغذی لازم برای رشد باکتری‌های اسیدلاکتیک (LAB) به‌منظور تولید متابولیت‌های میکروبی است که برای استفاده کارآمد از آن، بهینه‌سازی شرایط تخمیر حیاتی است. به‌منظور بهینه‌سازی تولید زیست‌توده خشک، سه متغیر مستقل غلظت لجن لبنی (5، 12.5 و 20 درصد)، pH (6، 7 و8) و نرخ تلقیح باکتری لاکتوباسیلوس فرمنتوم سویه 4-17 (1، 3 و 5 درصد) استفاده شد. قبل از عمل تخمیر، رشد سلولی و مورفولوژی این باکتری به‌منظور تعیین عملکرد میزان رشد و تأیید حضور باکتری در این بستر مورد بررسی قرار گرفت. متغیرهای مستقل با استفاده از روش سطح پاسخ (RSM) با طرح مرکب مرکزی (CCD) به‌منظور به حداکثر رساندن تولید زیست‌توده خشک توسط این باکتری بهینه شدند. نتایج بهینه‌سازی نشان داد که حداکثر میزان تولید زیست‌توده خشک مربوط به تیمار بهینه شامل 20درصد غلظت لجن لبنی، نرخ تلقیح 1درصد و pH 8 بود. همچنین باتوجه‌به نتایج، بستر لجن لبنی برای تخمیر این باکتری مناسب است. در نتیجه، اثر غلظت بستر لجن لبنی و pH بر میزان تولید زیست‌توده خشک توسط این باکتری بسیار معنی‌دار بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modeling of microbial biomass production by Lactobacillus fermentum 4-17 isolated from Tarkhineh in dairy sludge optimized by response surface methodology (RSM)

نویسندگان English

Alireza Heydarian 1
farideh tabatabaei yazdi 2
seyed Ali mortazavi 2
Fereshteh Falah 3
1 . PhD, Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Prof, Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran.
3 PhD, Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده English

Dairy sludge is one of the main and inexpensive wastes of the dairy industry, which contains the nutrients necessary for the growth of lactic acid bacteria (LAB) to produce microbial metabolites, and for its efficient use, optimization of fermentation conditions is critical. In order to optimize the production of dry biomass, three independent variables of dairy sludge concentration (5, 12.5 and 20%), pH (6, 7 and 8) and the inoculation rate of Lactobacillus fermentum strain 4-17 (1, 3 and 5%) were used. Before fermentation, the cell growth and morphology of this bacterium were examined in order to determine the function of the growth rate and confirm the presence of bacteria in this medium. The independent variables were optimized using response surface method (RSM) with central composite design (CCD) in order to maximize dry biomass production by this bacterium. The optimization results showed that the maximum amount of dry biomass production related to the optimal treatment included 20% dairy sludge concentration, 1% inoculation rate and pH 8. Also, according to the results, the dairy sludge substrate is suitable for the fermentation of this bacterium. As a result, the effect of dairy sludge bed concentration and pH on dry biomass production by this bacteria was very significant.

کلیدواژه‌ها English

Dairy wastewater
Response surface method
Lactobacillus fermentum 4-17
Modeling
[1]Wang, S .G., Gong, W .X., Liu, X .W., Tian, L., Yue, Q .Y., and Gao, B. Y. 2007. Production of a novel bioflocculant by culture of Klebsiella mobilis using dairy wastewater. J. Biochem. Eng, 36(2): 81-86.
[2]Demirel, B., Yenigun, O., and Onay, T .T. 2005. Anaerobic treatment of dairy wastewaters: a review. J. Process Biochem, 40(8): 2583-2595.
[3]Porwal, H .J., Mane, A .V., and Velhal, S .G. 2015. Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. J. Water Resour. Ind, 9: 1-15.
[4]Lappa, I .K., Papadaki, A., Kachrimanidou, V., Terpou, A., Koulougliotis, D., Eriotou, E., and Kopsahelis, N. 2019. Cheese whey processing: integrated biorefinery concepts and emerging food applications. J. Foods, 8(8): 347.
[5]Falah, F., Vasiee, A., Tabatabaei-Yazdi, F., Moradi, S., and Sabahi, S. 2022. Optimization of γ-aminobutyric acid (GABA) production by Lactobacillus spp. from agro-food waste. J. Biomass Convers, 1-13.
[6]Vasiee, A., Alizadeh Behbahani, B., Tabatabaei Yazdi, F., Mortazavi, S .A., and Noorbakhsh, H. 2018. Diversity and probiotic potential of lactic acid bacteria isolated from horreh, a traditional Iranian fermented food. J. Probiotics Antimicrob, 10: 258-268.
[7]Sengun, I .Y., and Karapinar, M. 2012. Microbiological quality of T arhana, T urkish cereal based fermented food. J. Qual. Assur. Saf, 4(1): 17-25.
[8]Tamime, A .Y., and Thomas, L .V. (Eds.). 2018. Probiotic dairy products. John Wiley & Sons.
[9]Bacha, K., Mehari, T., and Ashenafi, M. 2010. Antimicrobial susceptibility patterns of LAB isolated from wakalim, a traditional ethiopian fermented sausage. J. Food Saf, 30(1): 213-223.
[10]Mathara, J .M., Schillinger, U., Kutima, P .M., Mbugua, S .K., and Holzapfel, W .H. 2004. Isolation, identification and characterisation of the dominant microorganisms of kule naoto: the Maasai traditional fermented milk in Kenya. J. Int. Food Microbiol, 94(3): 269-278.
[11]Canon, F., Nidelet, T., Guédon, E., Thierry, A., and Gagnaire, V. 2020. Understanding the mechanisms of positive microbial interactions that benefit lactic acid bacteria co-cultures. J. Front Microbiol, 11: 2088.
[12]García-Ruiz, A., de Llano, D .G., Esteban-Fernández, A., Requena, T., Bartolomé, B., and Moreno-Arribas, M .V. 2014. Assessment of probiotic properties in lactic acid bacteria isolated from wine. J. Food Microbiol, 44: 220-225.
[13]Ouwehand, A .C., Salminen, S., and Isolauri, E. 2002. Probiotics: an overview of beneficial effects. In Lactic Acid Bacteria: Genetics, Metabolism and Applications: Proceedings of the seventh Symposium on lactic acid bacteria: genetics, metabolism and applications. Egmond aan Zee, the Netherlands (pp. 279-289): Springer Netherlands.
[14]Mosallaie, F., Jooyandeh, H., Hojjati, M., and Fazlara, A. 2020. Biological reduction of aflatoxin B1 in yogurt by probiotic strains of Lactobacillus acidophilus and Lactobacillus rhamnosus. J. Food Sci. Biotechnol, 29(6): 793-803.
[15]Falah, F., Vasiee, A., Behbahani, B .A., Yazdi, F .T., Moradi, S., Mortazavi, S .A., and Roshanak, S. 2019. Evaluation of adherence and anti-infective properties of probiotic Lactobacillus fermentum strain 4-17 against Escherichia coli causing urinary tract infection in humans. J. Microb. Pathog, 131: 246-253.
[16]de Souza, B .M .S., Borgonovi, T .F., Casarotti, S .N., Todorov, S .D., and Penna, A .L .B. 2019. Lactobacillus casei and Lactobacillus fermentum strains isolated from mozzarella cheese: probiotic potential, safety, acidifying kinetic parameters and viability under gastrointestinal tract conditions. J. Probiotics Antimicrob, 11: 382-396.
[17] Joyndeh, H., Alizadeh Behbahani, B., and Noshad, M., 2021. Investigating the effect of inulin on the viability of Lactobacillus fermentum strain 4-17 in practical ice cream and evaluating its microbial and physicochemical characteristics. J. F.S.T, 18(113): 91-100.‎
[18]Chicatto, J .A., Costa, A., Nunes, H., Helm, C .V., & Tavares, L. 2014. Evaluation of hollocelulase production by Lentinula edodes (Berk.) Pegler during the submerged fermentation growth using RSM. J. Braz. Biol, 74: 243-250.
[19]Horackova, S., Vesela, K., Klojdova, I., Bercikova, M., and Plockova, M. 2020. Bile salt hydrolase activity, growth characteristics and surface properties in Lactobacillus acidophilus. J. Eur. Food Res. Technol, 246: 1627-1636.
[20]Liu, T., Li, Y., Chen, J., Sadiq, F .A., Zhang, G., Li, Y., and He, G. 2016. Prevalence and diversity of lactic acid bacteria in Chinese traditional sourdough revealed by culture dependent and pyrosequencing approaches. J. LWT-FOOD SCI TECHNOL, 68: 91-97.
[21]Singh, A .K., Singh, G., Gautam, D., and Bedi, M .K. 2013. Optimization of dairy sludge for growth of Rhizobium cells. J. Biomed Res. Int, 2013.
[22]Harrigan, W .F., and McCance, M .E. 1976. Laboratory methods in food and dairy microbiology. Academic Press Inc.(London) Ltd.
[23]Mahon, C .R., and Manuselis, G. (Eds.). 2000. Textbook of diagnostic microbiology (Vol. 355). WB Saunders company.
[24]Choi, G .H., Lee, N .K., and Paik, H .D. 2021. Optimization of medium composition for biomass production of Lactobacillus plantarum 200655 using response surface methodology. J. Microbiol. Biotechnol. 31(5): 717-725
[25]Sharmila, V .G., Angappane, S., Gunasekaran, M., Kumar, G., and Banu, J .R. 2020. Immobilized ZnO nano film impelled bacterial disintegration of dairy sludge to enrich anaerobic digestion for profitable bioenergy production: Energetic and economic analysis. J. Bioresour. Technol, 308: 123276.
[26] Eskandari, E., Tabatabai Yazdi, F., Mortazavi S .A., and Kochaki. A., optimization of exopolysaccharide production by Rhizubium radiobacter PTCC 1654 bacteria in dairy sludge using statistical response surface method. J. F.S.T, 15(81): 201-215.‎
[27] Gharibzahedi, S .M .T., Mousavi, S .M., Hamedi, M., Rezaei, K., and Khodaiyan, F. 2013. Evaluation of physicochemical properties and antioxidant activities of Persian walnut oil obtained by several extraction methods. J. Ind Crops Prod, 45: 133-140.
[28]Koocheki, A., Taherian, A .R., Razavi, S .M., and Bostan, A. 2009. Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds. J. Food Hydrocoll, 23(8): 2369-2379.
[29]Silva, M .F., Fornari, R .C., Mazutti, M .A., de Oliveira, D., Padilha, F .F., Cichoski, A .J., and Treichel, H. 2009. Production and characterization of xantham gum by Xanthomonas campestris using cheese whey as sole carbon source. J. Food Eng, 90(1): 119-123.
[30]Hasegawa, M., Yamane, D., Funato, K., Yoshida, A., and Sambongi, Y. 2018. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis. J. Biosci. Bioeng, 125(3): 316-319.
[31]Ghazanfari, N., Falah, S., Vasiee, A., and Yazdi, F .T. 2023. Optimization of fermentation culture medium containing food waste for l-glutamate production using native lactic acid bacteria and comparison with industrial strain. J. LWT, 114871.
[32]Moradi, S., Zeraatpisheh, F., and Tabatabaee-Yazdi, F. 2022. Investigation of lactic acid production in optimized dairy wastewater culture medium. J. Biomass Convers. Biorefin, 1-12.
[33]Falah, F., Vasiee, A., Tabatabaei-Yazdi, F., Moradi, S., and Sabahi, S. 2022. Optimization of γ-aminobutyric acid (GABA) production by Lactobacillus spp. from agro-food waste. J. Biomass Convers. Biorefin, 1-13.
[34]Schepers, A .W., Thibault, J., and Lacroix, C. 2002. Lactobacillus helveticus growth and lactic acid production during pH-controlled batch cultures in whey permeate/yeast extract medium. Part I. Multiple factor kinetic analysis. J. Enzyme Microb. Technol, 30(2): 176-186.
[35]Chasoy, G .R., Chairez, I., and Durán-Páramo, E. 2020. Carbon/nitrogen ratio and initial pH effects on the optimization of lactic acid production by Lactobacillus casei subsp casei NRRL-441. J. Carbon, 27(10).
[36]Talluri, V .P., and Lanka, S .S. 2017. Optimization of cultural parameters for the production of antimicrobial compound from Lactobacillus fermentum (MTCC No. 1745). J. Bacteriol. Mycol, 4(5).
[37]Wang, X., Shao, C., Liu, L., Guo, X., Xu, Y., and Lü, X. 2017. Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. J. Int. Biol. Macromol, 103: 1173-1184.
[38]Jawad, A .H., Alkarkhi, A .F., Jason, O .C., Easa, A .M., and Norulaini, N .N. 2013. Production of the lactic acid from mango peel waste–Factorial experiment. J. King Saud Univ. Sci, 25(1): 39-45.
[39]Fu, R., Guan, M., Wang, G., Pan, L., and Li, Y. 2023. Optimised fermentation of bamboo waste using three types lactic acid bacteria and forming mechanism of binderless particleboard. J. Ind Crops Prod, 196: 116522.
[40]Dineshbhai, C .K., Basaiawmoit, B., Sakure, A .A., Maurya, R., Bishnoi, M., Kondepudi, K .K., and Hati, S. 2022. Exploring the potential of Lactobacillus and Saccharomyces for biofunctionalities and the release of bioactive peptides from whey protein fermentate. J. Food Biosci, 48: 101758.
[41]Tari, C., Ustok, F .I., and Harsa, S. (2009). Optimization of the associative growth of novel yoghurt cultures in the production of biomass, β-galactosidase and lactic acid using response surface methodology. J. Int. Dairy, 19(4): 236-243.